No Arabic abstract
The optical and UV variability of the majority of AGN may be related to the reprocessing of rapidly-changing X-ray emission from a more compact region near the central black hole. Such a reprocessing model would be characterised by lags between X-ray and optical/UV emission due to differences in light travel time. Observationally however, such lag features have been difficult to detect due to gaps in the lightcurves introduced through factors such as source visibility or limited telescope time. In this work, Gaussian process regression is employed to interpolate the gaps in the Swift X-ray and UV lightcurves of the narrow-line Seyfert 1 galaxy Mrk 335. In a simulation study of five commonly-employed analytic Gaussian process kernels, we conclude that the Matern 1/2 and rational quadratic kernels yield the most well-specified models for the X-ray and UVW2 bands of Mrk 335. In analysing the structure functions of the Gaussian process lightcurves, we obtain a broken power law with a break point at 125 days in the UVW2 band. In the X-ray band, the structure function of the Gaussian process lightcurve is consistent with a power law in the case of the rational quadratic kernel whilst a broken power law with a breakpoint at 66 days is obtained from the Matern 1/2 kernel. The subsequent cross-correlation analysis is consistent with previous studies and furthermore, shows tentative evidence for a broad X-ray-UV lag feature of up to 30 days in the lag-frequency spectrum where the significance of the lag depends on the choice of Gaussian process kernel.
We present an X-ray spectral and timing model to investigate the broad and variable iron line seen in the high flux state of Mrk 335. The model consists of a variable X-ray source positioned along the rotation axis of the black hole that illuminates the accretion disc producing a back-scattered, ionized reflection spectrum. We compute time lags including full dilution effects and perform simultaneous fitting of the 2-10 keV spectrum and the frequency-dependent time lags of 2.5-4 vs. 4-6.5 keV bands. The best-fitting parameters are consistent with a black hole mass of approximately 1.3 x 10^7 M_sun, disc inclination of 45 degrees and the photon index of the direct continuum of 2.4. The iron abundance is 0.5 and the ionization parameter is 10^3 erg cm / s at the innermost part of the disc and decreases further out. The X-ray source height is very small, approximately 2 r_g. Furthermore, we fit the Fe L lags simultaneously with the 0.3-10 keV spectrum. The key parameters are comparable to those previously obtained. We also report the differences below 2 keV using the xillver and reflionx models which could affect the interpretation of the soft excess. While simultaneously fitting spectroscopic and timing data can break the degeneracy between the source height and the black hole mass, we find that the measurements of the source height and the central mass significantly depend on the ionization state of the disc and are possibly model-dependent.
Time lags due to X-ray reverberation have been detected in several Seyfert galaxies. The different travel time between reflected and directly observed rays naturally causes this type of lag, which depends directly on the light-crossing timescale of the system and hence scales with the mass of the central black hole. Featureless `hard lags not associated with reverberation, and often interpreted as propagating mass accretion rate fluctuations, dominate the longer timescale variability. Here we fit our reltrans model simultaneously to the time-averaged energy spectrum and the lag-energy spectra of the Seyfert galaxy Mrk 335 over two timescales (Fourier frequency ranges). We model the hard lags as fluctuations in the slope and strength of the illuminating spectrum, and self-consistently account for the effects that these fluctuations have on the reverberation lags. The resulting mass estimate is $1.1^{+2.0}_{-0.7} times 10^6~M_odot$, which is significantly lower than the mass measured with the optical reverberation mapping technique (14 - 26 million $M_odot$). When we add the correlated variability amplitudes to the time lags by fitting the full complex cross-spectra, the model is unable to describe the characteristic reverberation Fe K$alpha$ line and cannot constrain the black hole mass. This may be due to the assumption that the direct radiation is emitted by a point-like source.
We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.
The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10-100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (~1800 A in the source frame) structure function appears to have two breaks and two different slopes between 10-160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.
We report on the deepest X-ray observation of the narrow-line Seyfert 1 galaxy Mrk 335 in the low-flux state obtained with Suzaku. The data are compared to a 2006 high-flux Suzaku observation when the source was ~10-times brighter. Describing the two flux levels self-consistently with partial covering models would require extreme circumstances, as the source would be subject to negligible absorption during the bright state and ninety-five per cent covering with near Compton-thick material when dim. Blurred reflection from an accretion disc around a nearly maximum spinning black hole (a>0.91, with preference for a spin parameter as high as ~ 0.995) appears more likely and is consistent with the long-term and rapid variability. Measurements of the emissivity profile and spectral modelling indicate the high-flux Suzaku observation of Mrk 335 is consistent with continuum-dominated, jet-like emission (i.e. beamed away from the disc). It can be argued that the ejecta must be confined to within ~25 rg if it does not escape the system. During the low-flux state the corona becomes compact and only extends to about 5 rg from the black hole, and the spectrum becomes reflection-dominated. The low-frequency lags measured at both epochs are comparable indicating that the accretion mechanism is not changing between the two flux levels. Various techniques to study the spectral variability (e.g. principal component analysis, fractional variability, difference spectra, and hardness ratio analysis) indicate that the low-state variability is dominated by changes in the power law flux and photon index, but that changes in the ionisation state of the reflector are also required. Most notably, the ionisation parameter becomes inversely correlated with the reflected flux after a long-duration flare-like event during the observation.