Do you want to publish a course? Click here

Multi-timescale reverberation mapping of Mrk 335

75   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time lags due to X-ray reverberation have been detected in several Seyfert galaxies. The different travel time between reflected and directly observed rays naturally causes this type of lag, which depends directly on the light-crossing timescale of the system and hence scales with the mass of the central black hole. Featureless `hard lags not associated with reverberation, and often interpreted as propagating mass accretion rate fluctuations, dominate the longer timescale variability. Here we fit our reltrans model simultaneously to the time-averaged energy spectrum and the lag-energy spectra of the Seyfert galaxy Mrk 335 over two timescales (Fourier frequency ranges). We model the hard lags as fluctuations in the slope and strength of the illuminating spectrum, and self-consistently account for the effects that these fluctuations have on the reverberation lags. The resulting mass estimate is $1.1^{+2.0}_{-0.7} times 10^6~M_odot$, which is significantly lower than the mass measured with the optical reverberation mapping technique (14 - 26 million $M_odot$). When we add the correlated variability amplitudes to the time lags by fitting the full complex cross-spectra, the model is unable to describe the characteristic reverberation Fe K$alpha$ line and cannot constrain the black hole mass. This may be due to the assumption that the direct radiation is emitted by a point-like source.



rate research

Read More

Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron K$alpha$ line, resulting from hard X-ray continuum photons illuminating the accretion disk. The reverberation lag resulting from the path length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modeling of energy dependent time lags and variability amplitude for a wide range of variability timescales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
227 - P. Chainakun , A. J. Young 2015
We present an X-ray spectral and timing model to investigate the broad and variable iron line seen in the high flux state of Mrk 335. The model consists of a variable X-ray source positioned along the rotation axis of the black hole that illuminates the accretion disc producing a back-scattered, ionized reflection spectrum. We compute time lags including full dilution effects and perform simultaneous fitting of the 2-10 keV spectrum and the frequency-dependent time lags of 2.5-4 vs. 4-6.5 keV bands. The best-fitting parameters are consistent with a black hole mass of approximately 1.3 x 10^7 M_sun, disc inclination of 45 degrees and the photon index of the direct continuum of 2.4. The iron abundance is 0.5 and the ionization parameter is 10^3 erg cm / s at the innermost part of the disc and decreases further out. The X-ray source height is very small, approximately 2 r_g. Furthermore, we fit the Fe L lags simultaneously with the 0.3-10 keV spectrum. The key parameters are comparable to those previously obtained. We also report the differences below 2 keV using the xillver and reflionx models which could affect the interpretation of the soft excess. While simultaneously fitting spectroscopic and timing data can break the degeneracy between the source height and the black hole mass, we find that the measurements of the source height and the central mass significantly depend on the ionization state of the disc and are possibly model-dependent.
The optical and UV variability of the majority of AGN may be related to the reprocessing of rapidly-changing X-ray emission from a more compact region near the central black hole. Such a reprocessing model would be characterised by lags between X-ray and optical/UV emission due to differences in light travel time. Observationally however, such lag features have been difficult to detect due to gaps in the lightcurves introduced through factors such as source visibility or limited telescope time. In this work, Gaussian process regression is employed to interpolate the gaps in the Swift X-ray and UV lightcurves of the narrow-line Seyfert 1 galaxy Mrk 335. In a simulation study of five commonly-employed analytic Gaussian process kernels, we conclude that the Matern 1/2 and rational quadratic kernels yield the most well-specified models for the X-ray and UVW2 bands of Mrk 335. In analysing the structure functions of the Gaussian process lightcurves, we obtain a broken power law with a break point at 125 days in the UVW2 band. In the X-ray band, the structure function of the Gaussian process lightcurve is consistent with a power law in the case of the rational quadratic kernel whilst a broken power law with a breakpoint at 66 days is obtained from the Matern 1/2 kernel. The subsequent cross-correlation analysis is consistent with previous studies and furthermore, shows tentative evidence for a broad X-ray-UV lag feature of up to 30 days in the lag-frequency spectrum where the significance of the lag depends on the choice of Gaussian process kernel.
We report on the deepest X-ray observation of the narrow-line Seyfert 1 galaxy Mrk 335 in the low-flux state obtained with Suzaku. The data are compared to a 2006 high-flux Suzaku observation when the source was ~10-times brighter. Describing the two flux levels self-consistently with partial covering models would require extreme circumstances, as the source would be subject to negligible absorption during the bright state and ninety-five per cent covering with near Compton-thick material when dim. Blurred reflection from an accretion disc around a nearly maximum spinning black hole (a>0.91, with preference for a spin parameter as high as ~ 0.995) appears more likely and is consistent with the long-term and rapid variability. Measurements of the emissivity profile and spectral modelling indicate the high-flux Suzaku observation of Mrk 335 is consistent with continuum-dominated, jet-like emission (i.e. beamed away from the disc). It can be argued that the ejecta must be confined to within ~25 rg if it does not escape the system. During the low-flux state the corona becomes compact and only extends to about 5 rg from the black hole, and the spectrum becomes reflection-dominated. The low-frequency lags measured at both epochs are comparable indicating that the accretion mechanism is not changing between the two flux levels. Various techniques to study the spectral variability (e.g. principal component analysis, fractional variability, difference spectra, and hardness ratio analysis) indicate that the low-state variability is dominated by changes in the power law flux and photon index, but that changes in the ionisation state of the reflector are also required. Most notably, the ionisation parameter becomes inversely correlated with the reflected flux after a long-duration flare-like event during the observation.
We study the multi-wavelength variability of the blazar Mrk 421 at minutes to days timescales using simultaneous data at $gamma$-rays from Fermi, 0.7-20 keV energies from AstroSat, and optical and near-infrared (NIR) wavelengths from ground-based observatories. We compute the shortest variability timescales at all of the above wavebands and find its value to be ~1.1 ks at the hard X-ray energies and increasingly longer at soft X-rays, optical and NIR wavelengths as well as at the GeV energies. We estimate the value of the magnetic field to be 0.5 Gauss and the maximum Lorentz factor of the emitting electrons ~1.6 x $10^5$ assuming that synchrotron radiation cooling drives the shortest variability timescale. Blazars vary at a large range of timescales often from minutes to years. These results, as obtained here from the very short end of the range of variability timescales of blazars, are a confirmation of the leptonic scenario and in particular the synchrotron origin of the X-ray emission from Mrk 421 by relativistic electrons of Lorentz factor as high as $10^5$. This particular mode of confirmation has been possible using minutes to days timescale variability data obtained from AstroSat and simultaneous multi-wavelength observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا