Do you want to publish a course? Click here

Impact of metals on (star)dust chemistry: a laboratory astrophysics approach

81   0   0.0 ( 0 )
 Added by Christine Joblin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Laboratory experiments are essential in exploring the mechanisms involved in stardust formation. One key question is how a metal is incorporated into dust for an environment rich in elements involved in stardust formation (C, H, O, Si). To address experimentally this question we have used a radiofrequency cold plasma reactor in which cyclic organosilicon dust formation is observed. Metallic (silver) atoms were injected in the plasma during the dust nucleation phase to study their incorporation in the dust. The experiments show formation of silver nanoparticles (~15 nm) under conditions in which organosilicon dust of size 200 nm or less is grown. The presence of AgSiO bonds, revealed by infrared spectroscopy, suggests the presence of junctions between the metallic nanoparticles and the organosilicon dust. Even after annealing we could not conclude on the formation of silver silicates, emphasizing that most of silver is included in the metallic nanoparticles. The molecular analysis performed by laser mass spectrometry exhibits a complex chemistry leading to a variety of molecules including large hydrocarbons and organometallic species. The reactivity of silver atoms/ions with acetylene was also studied in a laser vaporization source. Key organometallic species, AgnC2Hm (n=1-3; m=0-2), were identified and their structures and energetic data computed using density functional theory. This allows us to propose that molecular Ag-C seeds promote the formation of Ag clusters but also catalyze hydrocarbon growth. Throughout the article, we show how the developed methodology can be used to characterize the incorporation of metal atoms both in the molecular and dust phases. The reported methodology is a demonstration laying down the ground for future studies on metals of astrophysical interest such as iron.



rate research

Read More

377 - T. Grassi , S. Bovino , P. Caselli 2020
The evaporation of molecules from dust grains is crucial to understand some key aspects of the star- and the planet-formation processes. During the warm-up phase the presence of young protostellar objects induces molecules to evaporate from the dust surface into the gas phase, enhancing its chemical complexity. Similarly, in circumstellar disks, the position of the so-called snow-lines is determined by evaporation, with important consequences for the formation of planets. The amount of molecules that are desorbed depends on the interaction between the species and the grain surface, which is controlled by the binding energy. Recent theoretical and experimental works point towards a distribution of values for this parameter instead of the single value often employed in astrochemical models.We present here a new multi-binding energy framework, to assess the effects that a distribution of binding energies has on the amount of species bound to the grains. We find that the efficiency of the surface chemistry is significantly influenced by this process with crucial consequences on the theoretical estimates of the desorbed species.
478 - Q. Daniel Wang 2011
The galactic neighborhood, extending from the Milky Way to redshifts of about 0.1, is our unique local laboratory for detailed study of galaxies and their interplay with the environment. Such study provides a foundation of knowledge for interpreting observations of more distant galaxies and their environment. The Astro 2010 Science Frontier Galactic Neighborhood Panel identified four key scientific questions: 1) What are the flows of matter and energy in the circumgalactic medium? 2) What controls the mass-energy-chemical cycles within galaxies? 3) What is the fossil record of galaxy assembly from first stars to present? 4) What are the connections between dark and luminous matter? These questions, essential to the understanding of galaxies as interconnected complexes, can be addressed most effectively and/or uniquely in the galactic neighborhood. The panel also highlighted the discovery potential of time-domain astronomy and astrometry with powerful new techniques and facilities to greatly advance our understanding of the precise connections among stars, galaxies, and newly discovered transient events. The relevant needs for laboratory astrophysics will be emphasized, especially in the context of supporting NASA missions.
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.
356 - S. Gavino , A. Dutrey , V. Wakelam 2021
Grain surface chemistry is key to the composition of protoplanetary disks around young stars. The temperature of grains depends on their size. We evaluate the impact of this temperature dependence on the disk chemistry. We model a moderately massive disk with 16 different grain sizes. We use POLARIS to calculate the dust grain temperatures and the local UV flux. We model the chemistry using the 3-phase astrochemical code NAUTILUS. Photoprocesses are handled using frequency-dependent cross-sections, and a new method to account for self and mutual shielding. The multi-grain model outputs are compared to those of single-grain size models (0.1 $mu$m), with two different assumptions for their equivalent temperature. We find that the Langmuir-Hinshelwood (LH) mechanism at equilibrium temperature is not efficient to form H$_2$ at 3-4 scale heights ($H$), and adopt a parametric fit to a stochastic method to model H$_2$ formation instead. We find the molecular layer composition (1-3 $H$) to depend on the amount of remaining H atoms. Differences in molecular surface densities between single and multi-grain models are mostly due to what occurs above 1.5 $H$. At 100 au, models with colder grains produce H$_2$O and CH$_4$ ices in the midplane, and warmer ones produce more CO$_2$ ices, both allowing efficient depletion of C and O as soon as CO sticks on grain surfaces. Complex organic molecules (COMs) production is enhanced by the presence of warmer grains in the multi-grain models. Using a single grain model mimicking grain growth and dust settling fails to reproduce the complexity of gas-grain chemistry. Chemical models with a single grain size are sensitive to the adopted grain temperature, and cannot account for all expected effects. A spatial spread of the snowlines is expected to result from the ranges in grain temperature. The amplitude of the effects will depend on the dust disk mass.
94 - D. Uzdensky 2019
This is a science white paper submitted to the Astro-2020 and Plasma-2020 Decadal Surveys. The paper describes the present status and emerging opportunities in Extreme Plasma Astrophysics -- a study of astrophysically-relevant plasma processes taking place under extreme conditions that necessitate taking into account relativistic, radiation, and QED effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا