Do you want to publish a course? Click here

Waveguide quantum electrodynamics: collective radiance and photon-photon correlations

349   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review describes an emerging field of waveguide quantum electrodynamics (WQED) studying interaction of photons propagating in a waveguide with localized quantum emitters. In such systems, atoms and guided photons are hybridized with each other and form polaritons that can propagate along the waveguide, contrary to the cavity quantum optics setup. Emerging in such a system collective light-atom interactions result in super- and sub-radiant quantum states, that are promising for quantum information processing, and give rise to peculiar quantum correlations between photons. The review is aimed at both experimentalists and theoreticians from various fields of physics interested in the rapidly developing subject of WQED. We highlight recent groundbreaking experiments performed for different quantum platforms, including cold atoms, superconducting qubits, semiconductor quantum dots, quantum solid-state defects and at the same time provide a comprehensive introduction into various theoretical techniques to study atom-photon interactions in the waveguide.



rate research

Read More

We report the fabrication and characterization of a Ti$^{4+}$:Tm$^{3+}$:LiNbO$_3$ optical waveguide in view of photon-echo quantum memory applications. In particular, we investigated room- and cryogenic-temperature properties via absorption, spectral hole burning, photon echo, and Stark spectroscopy. We found radiative lifetimes of 82 $mu$s and 2.4 ms for the $^3$H$_4$ and $^3$F$_4$ levels, respectively, and a 44% branching ratio from the $^3$H$_{4}$ to the $^3$F$_4$ level. We also measured an optical coherence time of 1.6 $mu$s for the $^3$H$_6leftrightarrow{}^3$H$_4$, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz$cdot$cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.
Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.
159 - A. Javadi , I. Sollner , M. Arcari 2015
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
In our work, we study the dynamics of a single excitation in an one-dimensional array of two-level systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state, which is well-known to be superradiant, has twice lower emission rate in the case of unidirectional quantum interaction. Our model is supported and verified with the numerical computations of quantum emmiters coupled via surface plasmon modes in a metalic nanowire. The obtained results are based on a very general model and can be applied to any chirally coupled system, that gives a new outlook on quantum transport in chiral nanophotonics.
We consider the propagation of classical and non-classical light in multi-mode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much like the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the revival of the initial correlation pattern at the end of each period. It is found that when the input state possesses non trivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudo-thermal light, and compare the results with the predictions for non-classical, quantum light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا