Do you want to publish a course? Click here

Two-photon quantum walks in an elliptical direct-write waveguide array

115   0   0.0 ( 0 )
 Added by Matthew Broome
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.



rate research

Read More

We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk. Two identical bosons with no mutual interactions nonetheless can remain clustered together as they walk on a lattice of directionally-reversible optical four-ports acting as Grover coins; both photons move in the same direction at each step due to a two-photon quantum interference phenomenon reminiscent of the Hong-Ou-Mandel effect. The clustered two-photon amplitude splits into two localized parts, one oscillating near the initial point, and the other moving ballistically without spatial spread, in soliton-like fashion. But the two photons are always clustered in the same part of the superposition, leading to potential applications for transport of entanglement and opportunities for novel two-photon interferometry experiments.
This review describes an emerging field of waveguide quantum electrodynamics (WQED) studying interaction of photons propagating in a waveguide with localized quantum emitters. In such systems, atoms and guided photons are hybridized with each other and form polaritons that can propagate along the waveguide, contrary to the cavity quantum optics setup. Emerging in such a system collective light-atom interactions result in super- and sub-radiant quantum states, that are promising for quantum information processing, and give rise to peculiar quantum correlations between photons. The review is aimed at both experimentalists and theoreticians from various fields of physics interested in the rapidly developing subject of WQED. We highlight recent groundbreaking experiments performed for different quantum platforms, including cold atoms, superconducting qubits, semiconductor quantum dots, quantum solid-state defects and at the same time provide a comprehensive introduction into various theoretical techniques to study atom-photon interactions in the waveguide.
154 - A. Javadi , I. Sollner , M. Arcari 2015
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
We report the fabrication and characterization of a Ti$^{4+}$:Tm$^{3+}$:LiNbO$_3$ optical waveguide in view of photon-echo quantum memory applications. In particular, we investigated room- and cryogenic-temperature properties via absorption, spectral hole burning, photon echo, and Stark spectroscopy. We found radiative lifetimes of 82 $mu$s and 2.4 ms for the $^3$H$_4$ and $^3$F$_4$ levels, respectively, and a 44% branching ratio from the $^3$H$_{4}$ to the $^3$F$_4$ level. We also measured an optical coherence time of 1.6 $mu$s for the $^3$H$_6leftrightarrow{}^3$H$_4$, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz$cdot$cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.
Engineering apparatus that harness quantum theory offers practical advantages over current technology. A fundamentally more powerful prospect is the long-standing prediction that such quantum technologies could out-perform any future iteration of their classical counterparts, no matter how well the attributes of those classical strategies can be improved. Here, we experimentally demonstrate such an instance of textit{absolute} advantage per photon probe in the precision of optical direct absorption measurement. We use correlated intensity measurements of spontaneous parametric downconversion using a commercially available air-cooled CCD, a new estimator for data analysis and a high heralding efficiency photon-pair source. We show this enables improvement in the precision of measurement, per photon probe, beyond what is achievable with an ideal coherent state (a perfect laser) detected with $100%$ efficient and noiseless detection. We see this absolute improvement for up to $50%$ absorption, with a maximum observed factor of improvement of 1.46. This equates to around $32%$ reduction in the total number of photons traversing an optical sample, compared to any future direct optical absorption measurement using classical light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا