No Arabic abstract
Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker (Entman 1983). Differences in lexical framing, the focus of our work, can have large effects on peoples opinions and beliefs. To make progress towards reframing arguments for positive effects, we create a dataset and method for this task. We use a lexical resource for connotations to create a parallel corpus and propose a method for argument reframing that combines controllable text generation (positive connotation) with a post-decoding entailment component (same denotation). Our results show that our method is effective compared to strong baselines along the dimensions of fluency, meaning, and trustworthiness/reduction of fear.
How can model designers turn task instructions into effective prompts for language models? Backed by extensive empirical analysis on GPT3, we observe important features for successful instructional prompts, and propose several reframing techniques for model designers to create such prompts. For example, a complex task can be decomposed into multiple simpler tasks. We experiment over 12 NLP tasks across 6 diverse categories (question generation, classification, etc.). Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity over existing few-shot baselines. The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible. Furthermore, we observe that such gains are not limited to GPT3; the reframed tasks remain superior over raw instructions across different model architectures, underscoring the cross-model generality of these guidelines. We hope these empirical-driven techniques will pave way for more effective ways to prompt LMs in future.
We introduce a collection of recognizing textual entailment (RTE) datasets focused on figurative language. We leverage five existing datasets annotated for a variety of figurative language -- simile, metaphor, and irony -- and frame them into over 12,500 RTE examples.We evaluate how well state-of-the-art models trained on popular RTE datasets capture different aspects of figurative language. Our results and analyses indicate that these models might not sufficiently capture figurative language, struggling to perform pragmatic inference and reasoning about world knowledge. Ultimately, our datasets provide a challenging testbed for evaluating RTE models.
The recently proposed SNLI-VE corpus for recognising visual-textual entailment is a large, real-world dataset for fine-grained multimodal reasoning. However, the automatic way in which SNLI-VE has been assembled (via combining parts of two related datasets) gives rise to a large number of errors in the labels of this corpus. In this paper, we first present a data collection effort to correct the class with the highest error rate in SNLI-VE. Secondly, we re-evaluate an existing model on the corrected corpus, which we call SNLI-VE-2.0, and provide a quantitative comparison with its performance on the non-corrected corpus. Thirdly, we introduce e-SNLI-VE, which appends human-written natural language explanations to SNLI-VE-2.0. Finally, we train models that learn from these explanations at training time, and output such explanations at testing time.
We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by not just listing supporting textual evidence (rationales), but also showing how such evidence leads to the answer in a systematic way. If this could be done, new opportunities for understanding and debugging the systems reasoning would become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of entailment steps from facts that are known, through intermediate conclusions, to the final answer. To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. At each node in the tree (typically) two or more facts compose together to produce a new conclusion. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (the leaves of the gold entailment tree), (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model only partially solves these tasks, and identify several new directions to improve performance. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.