Do you want to publish a course? Click here

Revealing and controlling nuclear dynamics following inner-shell photoionization of N2

85   0   0.0 ( 0 )
 Added by Qingli Jing
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we apply the Monte Carlo wave packet method to study the ultrafast nuclear dynamics following inner-shell photoionization of N2 exposed to an ultrashort intense X-ray pulse. The photon energy of the X-ray pulse is large enough to remove a 1s electron from the N atom in N2. The intermediate state in N+2 is highly excited so that autoionization takes place from this state to the dissociative or non-dissociative electronic states of ungerade and gerade symmetries in N++2. The possible vibrational resonances allowed by the non-dissociative states prevents a direct extraction of the nuclear kinetic release (KER) spectrum from the nuclear wave packets in N++2. Therefore, we propose a hybrid technique by combining the advantages of two energy analysis strategies to obtain the final nuclear KER spectrum of the process. A femtosecond IR probe pulse, which couples the electronic states in N++2 together, is applied to achieve a time-resolved imaging and controlling of the ultrafast dynamics that takes place during double ionization of N2. The influence of the laser parameters including the peak intensity, pulse duration and pump-probe delay, on the nuclear dynamics is also investigated.



rate research

Read More

We discuss the complicated resonance structure of the endohedral atom photoionization cross section. Very strong enhancement and interference patterns in the photoionization cross-section of the valent and subvalent subshells of noble gas endohedral atoms A@C60 are demonstrated. It is shown also that the atomic Giant resonance can be either completely destroyed or remains almost untouched depending on the velocity of photoelectrons that are emitted in the resonances decay process. These effects are results of dynamic modification of the incoming beam of radiation due to polarization of the fullerenes electron shell and reflection of photoelectrons be the fullerenes shell static potential. We have considered the outer np- and subvalent ns-subshells for Ne, Ar, Kr and Xe noble gas atoms. The modification of the Giant resonances is considered for a whole sequence of endohedrals with atoms and ions Xe, Ba, La, Ce+, Ce+4, Eu. The polarization of the fullerene shell is expressed via the total photoabsorption cross section. The photoelectron reflection from the static potential is taken into account in the frame of the so-called bubble potential that is a spherical -type potential.
251 - M. Ya. Amusia 2006
We demonstrate rather interesting manifestations of co-existence of resonance features in characteristics of the photoionization of 3d-electrons in Xe@C60. It is shown that the reflection of photoelectrons produced by the 3d Xe photoionization affects greatly partial photoionization cross-sections of and levels and respective angular anisotropy parameters, both dipole and non-dipole adding to all of them additional maximums and minimums. The calculations are performed treating the 3/2 and 5/2 electrons as electrons of different kinds with their spins up and down. The effect of C60 shell is accounted for in the frame of the orange skin potential model.
We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV $leq~E_gamma~leq$ 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the systems center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by $-3/5$ times the photon momentum. These results experimentally confirm a 90 year old prediction.
The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range $19...40$ eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the $C_{2}H_{2}^{+}$ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the $4pi$-collection geometry of velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
83 - D. L. Huber 2018
We investigate the linear behavior in the 2+ ion concentration observed in the double photoionization of a variety of aromatic molecules. We show it arises when the photoelectrons are emitted simultaneously. Neglecting the momentum of the incoming photon and the momentum transferred to the molecule, it follows that the momenta of the individual photoelectrons are oppositely directed and equal in magnitude. Under steady-state conditions, the ion concentration is proportional to the rate at which the ions are created which, in turn, varies as the product of the densities of states of the individual electrons. The latter vary as the square root of the kinetic energy, leading to overall linear behavior. The origin of the linear behavior in pyrrole and related molecules is attributed to the presence of atoms that destroy the periodicity of a hypothetical carbon loop. In contrast, the resonant behavior observed in pyridine and related molecules, where a fraction of the CH pairs is replaced by N atoms, is associated with electron transfer between the nitrogen atoms and carbon atoms that preserves the periodicity of the closed loop.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا