Do you want to publish a course? Click here

An investigation of type-I superconductivity in single crystal of Pb2Pd

102   0   0.0 ( 0 )
 Added by Ravi Singh
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the superconducting properties in a single crystal of a new superconductor Pb$_{2}$Pd via various techniques including magnetization, AC transport, transverse field muon spin rotation and relaxation (TF-$mu$SR), and heat capacity. Pb$_{2}$Pd crystallizes in a body-centred tetragonal structure with space group I4/$mcm$. All measurements confirm the superconducting transition temperature, T$_{C}$ = 3.0 $pm$ 0.1 K. Electronic specific heat data are well described by the BCS fitting, suggesting that Pb$_{2}$Pd opens an isotropic gap on entering the superconducting state. The specific heat jump and $lambda_{e-ph}$ value categorize Pb$_{2}$Pd as a moderately coupled superconductor. Magnetization and transverse field muon spin rotation measurements along with Ginzburg-Landau parameter, $kappa$ < 1/$sqrt{2}$ strongly infers that Pb$_{2}$Pd is a type I superconductor.



rate research

Read More

188 - X. Luo , D. F. Shao , Q. L. Pei 2015
We report the superconductivity of the CaSn3 single crystal with a AuCu3-type structure, namely cubic space group Pm3m. The superconducting transition temperature TC=4.2 K is determined by the magnetic susceptibility, electrical resistivity, and heat capacity measurements. The magnetization versus magnetic field (M-H) curve at low temperatures shows the typical-II superconducting behavior. The estimated lower and upper critical fields are about 125 Oe and 1.79 T, respectively. The penetration depth lambda(0) and coherence length xi(0) are calculated to be approximately 1147 nm and 136 nm by the Ginzburg-Landau equations. The estimated Sommerfeld coefficient of the normal state {gamma}_N is about 2.9 mJ/mol K2. {Delta}C/{gamma}NTC =1.13 and {lambda}ep=0.65 suggest that CaSn3 single crystal is a weakly coupled superconductor. Electronic band structure calculations show a complex multi-sheet Fermi surface formed by three bands and a low density of states (DOS) at the Fermi level, which is consistent with the experimental results. Based on the analysis of electron phonon coupling of AX3 compounds (A=Ca, La, and Y; X=Sn and Pb), we theoretically proposed a way to increase TC in the system.
225 - Ziyi Liu , Wei Wu , Zhenzheng Zhao 2019
We report the discovery of superconductivity on high-quality single crystals of transition-metal pnictides WP grown by chemical vapor transport (CVT) method. Bulk superconductivity is observed at Tc = 0.84 K under ambient pressure by electrical resistivity and AC magnetic susceptibility measurements. The effects of magnetic field on the superconducting transitions are studied, leading to a large anisotropy parameter around 2 with the in-plane and out-of-plane upper critical fields of Hc2=172 Oe and Hc2=85 Oe, respectively. Our finding demonstrates that WP is the first superconductor in 5d transition-metal at ambient pressure in MnP-type, which will help to search for new superconductors in transition-metal pnictides.
Superconductivity has been first observed in TlNi$_2$Se$_2$ at T$_C$=3.7 K and appears to involve heavy electrons with an effective mass $m^*$=14$sim$20 $m_b$, as inferred from the normal state electronic specific heat and the upper critical field, H_${C2}$(T). Although the zero-field electronic specific heat data, $C_{es}(T)$, in low temperatures (T < 1/4 T$_C$) can be fitted with a gap BCS model, indicating that TlNi$_2$Se$_2$ is a fully gapped superconductor, the two-gap BCS model presents the best fit to all the $C_{es}(T)$ data below $T_C$. It is also found that the electronic specific heat coefficient in the mixed state, $gamma_N(H)$, exhibits a textit{H}$^{1/2}$ behavior, which was also observed in some textit{s}-wave superconductors, although once considered as a common feature of the textit{d}-wave superconductors. Anyway, these results indicate that TlNi$_2$Se$_2$, as a non-magnetic analogue of TlFe$_x$Se$_2$ superconductor, is a multiband superconductor of heavy electron system.
300 - G. J. Zhao , X. X. Gong , P. C. Xu 2018
Andreev reflection spectroscopy with unpolarized and highly spin-polarized currents has been utilized to study an intermetallic single-crystal superconductor NiBi3. Magnetoresistance at zero bias voltage of point contacts shows the occurrence and suppression of Andreev reflection by unpolarized and polarized current, respectively. The gap value, its symmetry and temperature dependence have been determined using an unpolarized current. The spin state in the NiBi3 sample is determined to be antiparallel using a highly spin-polarized current. The gap value 2Delta/kBT, gap symmetry and its temperature dependence, combined with the antiparallel spin state show that the bulk NiBi3 is a singlet s-wave superconductor.
391 - X.D. Zhu , Y.P. Sun , S.B. Zhang 2009
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا