Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.
In this letter, we report growth and characterization of bulk Bi2Se3 single crystals. The studied Bi2Se3 crystals are grown by self flux method through solid state reaction from high temperature (950C) melt of constituent elements and slow cooling (2C/hour). The resultant crystals are shiny and grown in [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of PXRD (powder x-ray diffraction) of the crystals showed that these are crystallized in rhombohedral crystal structure with space group of R3m (D5) and the lattice parameters are a = 4.14(2)A, b = 4.14 (2) A and c = 28.7010(7) A. Temperature versus resistivity (R-T) plots revealed metallic conduction down to 2K, with typical room temperature resistivity (R300K) of around 0.53 mohm-cm and residual resistivity of 0.12 mohm-cm. Resistivity under magnetic field ] measurements exhibited large +Ve magneto resistance right from 2K to 200K. Isothermal magneto resistance [RH] measurements at 2K, 100K and 200K exhibited magneto resistance (MR) of up to 240, 130 and 60 percent respectively at 14 Tesla. Further the MR plots are non saturating and linear with field at all temperature. At 2K the MR plots showed clear quantum oscillations at above say 10 Tesla applied field. Also the Kohler plots i.e., were seen consolidating on one plot. Interestingly, the studied Bi2Se3 single crystal exhibited the Shubnikov-de Haas oscillations (SdH) at 2K under different applied magnetic fields ranging from 4Tesla to 14 Tesla
Single crystal of YCoGa5 has been grown via Ga self-flux. In this paper, we report the single crystal growth, crystallographic parameters, resistivity, heat capacity, and band structure results of YCoGa5. YCoGa5 accommodates the HoCoGa5 type structure (space group P4/mmm (No. 123), Z = 1, a = 4.2131(6) A, c = 6.7929(13) A, which is isostructural to the extensively studied heavy fermion superconductor system CeMIn5 (M = Co, Rh, Ir) and the unconventional superconductor PuCoGa5 with Tc = 18.5 K. No superconductivity is observed down to 1.75 K. Band structure calculation results show that its band at the Fermi level is mainly composed of Co-3d and Ga-4p electrons states, which explains its similarity of physical properties to YbCoGa5 and LuCoGa5.
Single crystals FeSe_x have been grown in evacuated sealed quartz tube using a NaCl/KCl flux. The products include two crystal structures of tetragon and hexagon. The electronic transport and magnetic properties measurements of FeSe_x single crystal exhibits a superconducting transition at about 10K.
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe$_2$As$_2$ phase. We found that the BaFe$_2$As$_2$ phase most likely melts congruently and primarily solidifies either in the FeAs excess or Ba$_{x}$As$_{100-x}$ excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba$_{15}$Fe$_{42.5}$As$_{42.5}$. Large single crystals of the typical size 10x4x2 mm$^3$ were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.