No Arabic abstract
Category-level 6D object pose and size estimation is to predict full pose configurations of rotation, translation, and size for object instances observed in single, arbitrary views of cluttered scenes. In this paper, we propose a new method of Dual Pose Network with refined learning of pose consistency for this task, shortened as DualPoseNet. DualPoseNet stacks two parallel pose decoders on top of a shared pose encoder, where the implicit decoder predicts object poses with a working mechanism different from that of the explicit one; they thus impose complementary supervision on the training of pose encoder. We construct the encoder based on spherical convolutions, and design a module of Spherical Fusion wherein for a better embedding of pose-sensitive features from the appearance and shape observations. Given no testing CAD models, it is the novel introduction of the implicit decoder that enables the refined pose prediction during testing, by enforcing the predicted pose consistency between the two decoders using a self-adaptive loss term. Thorough experiments on benchmarks of both category- and instance-level object pose datasets confirm efficacy of our designs. DualPoseNet outperforms existing methods with a large margin in the regime of high precision. Our code is released publicly at https://github.com/Gorilla-Lab-SCUT/DualPoseNet.
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image, without external pose-annotated real-world training data. While previous works exploit visual cues in RGB(D) images, our method makes inferences based on the rich geometric information of the object in the depth channel alone. Essentially, our framework explores such geometric information by learning the unified 3D Orientation-Consistent Representations (3D-OCR) module, and further enforced by the property of Geometry-constrained Reflection Symmetry (GeoReS) module. The magnitude information of object size and the center point is finally estimated by Mirror-Paired Dimensional Estimation (MPDE) module. Extensive experiments on the category-level NOCS benchmark demonstrate that our framework competes with state-of-the-art approaches that require labeled real-world images. We also deploy our approach to a physical Baxter robot to perform manipulation tasks on unseen but category-known instances, and the results further validate the efficacy of our proposed model. Our videos are available in the supplementary material.
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to instance-level 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either training or testing time. To handle different and unseen object instances in a given category, we introduce a Normalized Object Coordinate Space (NOCS)---a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new context-aware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
Category-level 6D pose estimation, aiming to predict the location and orientation of unseen object instances, is fundamental to many scenarios such as robotic manipulation and augmented reality, yet still remains unsolved. Precisely recovering instance 3D model in the canonical space and accurately matching it with the observation is an essential point when estimating 6D pose for unseen objects. In this paper, we achieve accurate category-level 6D pose estimation via cascaded relation and recurrent reconstruction networks. Specifically, a novel cascaded relation network is dedicated for advanced representation learning to explore the complex and informative relations among instance RGB image, instance point cloud and category shape prior. Furthermore, we design a recurrent reconstruction network for iterative residual refinement to progressively improve the reconstruction and correspondence estimations from coarse to fine. Finally, the instance 6D pose is obtained leveraging the estimated dense correspondences between the instance point cloud and the reconstructed 3D model in the canonical space. We have conducted extensive experiments on two well-acknowledged benchmarks of category-level 6D pose estimation, with significant performance improvement over existing approaches. On the representatively strict evaluation metrics of $3D_{75}$ and $5^{circ}2 cm$, our method exceeds the latest state-of-the-art SPD by $4.9%$ and $17.7%$ on the CAMERA25 dataset, and by $2.7%$ and $8.5%$ on the REAL275 dataset. Codes are available at https://wangjiaze.cn/projects/6DPoseEstimation.html.
In this paper, we focus on category-level 6D pose and size estimation from monocular RGB-D image. Previous methods suffer from inefficient category-level pose feature extraction which leads to low accuracy and inference speed. To tackle this problem, we propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation. First, we design an orientation aware autoencoder with 3D graph convolution for latent feature extraction. The learned latent feature is insensitive to point shift and object size thanks to the shift and scale-invariance properties of the 3D graph convolution. Then, to efficiently decode category-level rotation information from the latent feature, we propose a novel decoupled rotation mechanism that employs two decoders to complementarily access the rotation information. Meanwhile, we estimate translation and size by two residuals, which are the difference between the mean of object points and ground truth translation, and the difference between the mean size of the category and ground truth size, respectively. Finally, to increase the generalization ability of FS-Net, we propose an online box-cage based 3D deformation mechanism to augment the training data. Extensive experiments on two benchmark datasets show that the proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation. Especially in category-level pose estimation, without extra synthetic data, our method outperforms existing methods by 6.3% on the NOCS-REAL dataset.
6D pose estimation from a single RGB image is a challenging and vital task in computer vision. The current mainstream deep model methods resort to 2D images annotated with real-world ground-truth 6D object poses, whose collection is fairly cumbersome and expensive, even unavailable in many cases. In this work, to get rid of the burden of 6D annotations, we formulate the 6D pose refinement as a Markov Decision Process and impose on the reinforcement learning approach with only 2D image annotations as weakly-supervised 6D pose information, via a delicate reward definition and a composite reinforced optimization method for efficient and effective policy training. Experiments on LINEMOD and T-LESS datasets demonstrate that our Pose-Free approach is able to achieve state-of-the-art performance compared with the methods without using real-world ground-truth 6D pose labels.