Do you want to publish a course? Click here

Enhancing VMAF through New Feature Integration and Model Combination

47   0   0.0 ( 0 )
 Added by Fan Zhang Dr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

VMAF is a machine learning based video quality assessment method, originally designed for streaming applications, which combines multiple quality metrics and video features through SVM regression. It offers higher correlation with subjective opinions compared to many conventional quality assessment methods. In this paper we propose enhancements to VMAF through the integration of new video features and alternative quality metrics (selected from a diverse pool) alongside multiple model combination. The proposed combination approach enables training on multiple databases with varying content and distortion characteristics. Our enhanced VMAF method has been evaluated on eight HD video databases, and consistently outperforms the original VMAF model (0.6.1) and other benchmark quality metrics, exhibiting higher correlation with subjective ground truth data.

rate research

Read More

Video-quality measurement plays a critical role in the development of video-processing applications. In this paper, we show how video preprocessing can artificially increase the popular quality metric VMAF and its tuning-resistant version, VMAF NEG. We propose a pipeline that tunes processing-algorithm parameters to increase VMAF by up to 218.8%. A subjective comparison revealed that for most preprocessing methods, a videos visual quality drops or stays unchanged. We also show that some preprocessing methods can increase VMAF NEG scores by up to 23.6%.
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps. In addition, the proposed framework allows us to perform task-aware image compressions for various tasks, e.g., classification, by efficiently estimating optimized quality maps specific to target tasks for our encoding network. This is even possible with a pretrained network without learning separate models for individual tasks. Our algorithm achieves outstanding rate-distortion trade-off compared to the approaches based on multiple models that are optimized separately for several different target rates. At the same level of compression, the proposed approach successfully improves performance on image classification and text region quality preservation via task-aware quality map estimation without additional model training. The code is available at the project website: https://github.com/micmic123/QmapCompression
179 - Zhihao Hu , Guo Lu , Dong Xu 2021
Learning based video compression attracts increasing attention in the past few years. The previous hybrid coding approaches rely on pixel space operations to reduce spatial and temporal redundancy, which may suffer from inaccurate motion estimation or less effective motion compensation. In this work, we propose a feature-space video coding network (FVC) by performing all major operations (i.e., motion estimation, motion compression, motion compensation and residual compression) in the feature space. Specifically, in the proposed deformable compensation module, we first apply motion estimation in the feature space to produce motion information (i.e., the offset maps), which will be compressed by using the auto-encoder style network. Then we perform motion compensation by using deformable convolution and generate the predicted feature. After that, we compress the residual feature between the feature from the current frame and the predicted feature from our deformable compensation module. For better frame reconstruction, the reference features from multiple previous reconstructed frames are also fused by using the non-local attention mechanism in the multi-frame feature fusion module. Comprehensive experimental results demonstrate that the proposed framework achieves the state-of-the-art performance on four benchmark datasets including HEVC, UVG, VTL and MCL-JCV.
Recent studies on learning-based image denoising have achieved promising performance on various noise reduction tasks. Most of these deep denoisers are trained either under the supervision of clean references, or unsupervised on synthetic noise. The assumption with the synthetic noise leads to poor generalization when facing real photographs. To address this issue, we propose a novel deep image-denoising method by regarding the noise reduction task as a special case of the noise transference task. Learning noise transference enables the network to acquire the denoising ability by observing the corrupted samples. The results on real-world denoising benchmarks demonstrate that our proposed method achieves promising performance on removing realistic noises, making it a potential solution to practical noise reduction problems.
Neural-networks based image restoration methods tend to use low-resolution image patches for training. Although higher-resolution image patches can provide more global information, state-of-the-art methods cannot utilize them due to their huge GPU memory usage, as well as the instable training process. However, plenty of studies have shown that global information is crucial for image restoration tasks like image demosaicing and enhancing. In this work, we propose a HighEr-Resolution Network (HERN) to fully learning global information in high-resolution image patches. To achieve this, the HERN employs two parallel paths to learn image features in two different resolutions, respectively. By combining global-aware features and multi-scale features, our HERN is able to learn global information with feasible GPU memory usage. Besides, we introduce a progressive training method to solve the instability issue and accelerate model convergence. On the task of image demosaicing and enhancing, our HERN achieves state-of-the-art performance on the AIM2019 RAW to RGB mapping challenge. The source code of our implementation is available at https://github.com/MKFMIKU/RAW2RGBNet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا