No Arabic abstract
In this work, we present the analysis of 33,054 M-dwarf stars located within 100 parsecs in the Transiting Exoplanet Survey Satellite (TESS) Full Frame Images (FFIs) of the observed sectors 1 to 5. We present a new pipeline called NEMESIS which was developed to extract detrended photometry and perform transit searches of single sector data in TESS FFIs. As many M-dwarfs are faint and are not observed with a 2 minute cadence by TESS, FFI transit surveys can give an empirical validation of how many planets are missed by using the 30 minute cadence data. In this work, we detected 183 threshold crossing events and present 29 planet candidates for sectors 1 to 5, 24 of which are new detections. Our sample contains orbital periods ranging from 1.25 to 6.84 days and planetary radii from 1.26 to 5.31 Earth radii. With the addition of our new planet candidate detections along with previous detections observed in sectors 1 to 5, we calculate an integrated occurrence rate of 2.49 +/- 1.58 planets per star for the period range between [1,9] days and planet radius range between [0.5,11] Earth radii. We project an estimated yield of 122 +/- 11 transit detections of nearby M-dwarfs. 23 of our new candidates have Signal to Noise ratios > 7, Transmission Spectroscopy Metrics > 38 and Emission Spectroscopy Metrics > 10. We provide all of our data products for our planet candidates through the Filtergraph data visualization service located at https://filtergraph.com/NEMESIS.
$Kepler$ revealed that roughly one-third of Sun-like stars host planets orbiting within 100 days and between the size of Earth and Neptune. How do these planets form, what are they made of, and do they represent a continuous population or multiple populations? To help address these questions, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 TESS-detected exoplanets and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, small planet RV measurements have been challenging to obtain due to host star faintness and low RV semi-amplitudes, and challenging to interpret due to the potential biases in target selection and observation planning decisions. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and observing strategy. In this paper, we (1) describe our motivation and survey strategy, (2) present our first catalog of planet density constraints for 27 TESS Objects of Interest (TOIs; 22 in our population analysis sample, 12 that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find that the biases causing previous M-R relations to predict fairly high masses at $1~R_oplus$ have been reduced. This work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.
We present initial results from a new high-contrast imaging program dedicated to stars that exhibit long-term Doppler radial velocity accelerations (or trends). The goal of the TRENDS (TaRgetting bENchmark-objects with Doppler Spectroscopy and) imaging survey is to directly detect and study the companions responsible for accelerating their host star. In this first paper of the series, we report the discovery of low-mass stellar companions orbiting HD 53665, HD 68017, and HD 71881 using NIRC2 adaptive optics (AO) observations at Keck. Follow-up imaging demonstrates association through common proper-motion. These co-moving companions have red colors with estimated spectral-types of K7--M0, M5, and M3--M4 respectively. We determine a firm lower-limit to their mass from Doppler and astrometric measurements. In the near future, it will be possible to construct three-dimensional orbits and calculate the dynamical mass of HD 68017 B and possibly HD 71881 B. We already detect astrometric orbital motion of HD 68017 B, which has a projected separation of 13.0 AU. Each companion is amenable to AO-assisted direct spectroscopy. Further, each companion orbits a solar-type star, making it possible to infer metallicity and age from the primary. Such benchmark objects are essential for testing theoretical models of cool dwarf atmospheres.
Aims. As a sub-Uranus-mass low-density planet, GJ 3470b has been found to show a flat featureless transmission spectrum in the infrared and a tentative Rayleigh scattering slope in the optical. We conducted an optical transmission spectroscopy project to assess the impacts of stellar activity and to determine whether or not GJ 3470b hosts a hydrogen-rich gas envelop. Methods. We observed three transits with the low-resolution OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias, and one transit with the high-resolution UVES spectrograph at the 8.2 m Very Large Telescope. Results. From the high-resolution data, we find that the difference of the Ca II H+K lines in- and out-of-transit is only 0.67 +/- 0.22%, and determine a magnetic filling factor of about 10-15%. From the low-resolution data, we present the first optical transmission spectrum in the 435-755 nm band, which shows a slope consistent with Rayleigh scattering. Conclusions. After exploring the potential impacts of stellar activity in our observations, we confirm that Rayleigh scattering in an extended hydrogen/helium atmosphere is currently the best explanation. Further high-precision observations that simultaneously cover optical and infrared bands are required to answer whether or not clouds and hazes exist at high-altitude.
The transit method of exoplanet discovery and characterization has enabled numerous breakthroughs in exoplanetary science. These include measurements of planetary radii, mass-radius relationships, stellar obliquities, bulk density constraints on interior models, and transmission spectroscopy as a means to study planetary atmospheres. The Transiting Exoplanet Survey Satellite (TESS) has added to the exoplanet inventory by observing a significant fraction of the celestial sphere, including many stars already known to host exoplanets. Here we describe the science extraction from TESS observations of known exoplanet hosts during the primary mission. These include transit detection of known exoplanets, discovery of additional exoplanets, detection of phase signatures and secondary eclipses, transit ephemeris refinement, and asteroseismology as a means to improve stellar and planetary parameters. We provide the statistics of TESS known host observations during Cycle 1 & 2, and present several examples of TESS photometry for known host stars observed with a long baseline. We outline the major discoveries from observations of known hosts during the primary mission. Finally, we describe the case for further observations of known exoplanet hosts during the TESS extended mission and the expected science yield.
We consider the magnetic interaction of exoplanets orbiting M-dwarfs, calculating the expected Poynting flux carried upstream along Alfv{e}n wings to the central star. A region of emission analogous to the Io footprint observed in Jupiters aurora is produced, and we calculate the radio flux density generated near the surface of the star via the electron-cyclotron maser instability. We apply the model to produce individual case studies for the TRAPPIST-1, Proxima Centauri, and the dwarf NGTS-1 systems. We predict steady-state flux densities of up to ~ 10 $mu$Jy and sporadic bursts of emission of up to ~ 1 mJy from each case study, suggesting these systems may be detectable with the Very Large Array (VLA) and the Giant Metrewave Radio Telescope (GMRT), and in future with the Square Kilometre Array (SKA). Finally, we present a survey of 85 exoplanets orbiting M-dwarfs, identifying 11 such objects capable of generating radio emission above 10 $mu$Jy.