Do you want to publish a course? Click here

Interface in presence of a wall. Results from field theory

134   0   0.0 ( 0 )
 Added by Marianna Sorba
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider three-dimensional statistical systems at phase coexistence in the half-volume with boundary conditions leading to the presence of an interface. Working slightly below the critical temperature, where universal properties emerge, we show how the problem can be studied analytically from first principles, starting from the degrees of freedom (particle modes) of the bulk field theory. After deriving the passage probability of the interface and the order parameter profile in the regime in which the interface is not bound to the wall, we show how the theory accounts at the fundamental level also for the binding transition and its key parameter.



rate research

Read More

We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form factor expansions in the pre-quench and post-quench basis, respectively. Our results clarify the domain of validity of these expansions and suggest directions for further improvement. We show for quenches in the $E_8$ model that the initial state is not of the integrable pair state form. We also construct quench overlap functions and show that their high-energy asymptotics are markedly different from those constructed before in the sinh/sine-Gordon theory, and argue that this is related to properties of the ultraviolet fixed point.
We investigate a perturbatively renormalizable $S_{q}$ invariant model with $N=q-1$ scalar field components below the upper critical dimension $d_c=frac{10}{3}$. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the $(d,q)$ diagram of the Potts model.
102 - H. W. Diehl , M. Shpot 2000
The critical behavior of d-dimensional systems with an n-component order parameter is reconsidered at (m,d,n)-Lifshitz points, where a wave-vector instability occurs in an m-dimensional subspace of ${mathbb R}^d$. Our aim is to sort out which ones of the previously published partly contradictory $epsilon$-expansion results to second order in $epsilon=4+frac{m}{2}-d$ are correct. To this end, a field-theory calculation is performed directly in the position space of $d=4+frac{m}{2}-epsilon$ dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles. The residua of the dimensionally regularized integrals that are required to determine the series expansions of the correlation exponents $eta_{l2}$ and $eta_{l4}$ and of the wave-vector exponent $beta_q$ to order $epsilon^2$ are reduced to single integrals, which for general m=1,...,d-1 can be computed numerically, and for special values of m, analytically. Our results are at variance with the original predictions for general m. For m=2 and m=6, we confirm the results of Sak and Grest [Phys. Rev. B {bf 17}, 3602 (1978)] and Mergulh{~a}o and Carneiros recent field-theory analysis [Phys. Rev. B {bf 59},13954 (1999)].
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions deter- mining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provide a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
151 - John Cardy 2014
We consider a quantum quench in a finite system of length $L$ described by a 1+1-dimensional CFT, of central charge $c$, from a state with finite energy density corresponding to an inverse temperature $betall L$. For times $t$ such that $ell/2<t<(L-ell)/2$ the reduced density matrix of a subsystem of length $ell$ is exponentially close to a thermal density matrix. We compute exactly the overlap $cal F$ of the state at time $t$ with the initial state and show that in general it is exponentially suppressed at large $L/beta$. However, for minimal models with $c<1$ (more generally, rational CFTs), at times which are integer multiples of $L/2$ (for periodic boundary conditions, $L$ for open boundary conditions) there are (in general, partial) revivals at which $cal F$ is $O(1)$, leading to an eventual complete revival with ${cal F}=1$. There is also interesting structure at all rational values of $t/L$, related to properties of the CFT under modular transformations. At early times $t!ll!(Lbeta)^{1/2}$ there is a universal decay ${cal F}simexpbig(!-!(pi c/3)Lt^2/beta(beta^2+4t^2)big)$. The effect of an irrelevant non-integrable perturbation of the CFT is to progressively broaden each revival at $t=nL/2$ by an amount $O(n^{1/2})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا