Do you want to publish a course? Click here

Anomalous reflection at the interface of binary synthetic photonic lattices

136   0   0.0 ( 0 )
 Added by Xinyuan Qi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a binary synthetic photonic lattice theoretically with an effective magnetic field by projecting two fiber loops light intensity and adjusting the phase distribution precisely. By tuning the phase modulator, wave vector, and propagation constant of an effective waveguide, the interfaces transmittance could be manipulated. Further light dynamics show that the light pulse can achieve total reflection without diffraction and exchanges the light energy in two optical fiber loops completely when phase distribution and wave vector meet certain conditions. Our study may provide a new way to realize optical switches in optical interconnection and optical communication.



rate research

Read More

Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed technique to realise mean-field interacting photonic lattices relies on a Suzuki-Trotter decomposition of the unitary evolution for the full Hamiltonian. The technique realises the dynamics in an analogous way to that of a step-wise numerical implementation of quantum dynamics, in the spirit of digital quantum simulation. It is a very versatile technique which allows for the emulation of interactions that do not only depend on inter-particle separations or do not decay with particle separation. We detail the proposed experimental scheme and consider two examples of interacting phenomena, self-trapping and the decay of Bloch oscillations, that are observable with the proposed technique.
We predict a generic mechanism of wave localization at an interface between uniform gauge fields, arising due to propagation-dependent phase accumulation similar to Aharonov-Bohm phenomenon. We realize experimentally a photonic mesh lattice with real-time control over the vector gauge field, and observe robust localization under a broad variation of gauge strength and direction, as well as structural lattice parameters. This suggests new possibilities for confining and guiding waves in diverse physical systems through the synthetic gauge fields.
We report on the experimental observation of reduced light energy transport and disorder-induced localization close to a boundary of a truncated one-dimensional (1D) disordered photonic lattice. Our observations uncover that near the boundary a higher level of disorder is required to obtain similar localization than in the bulk.
By generalizing the well known results for reflection and refraction of plane waves at the vacuum-medium interface to Gaussian light beams, we obtain analytic formulas for reflection and refraction of the TM and TE laser light pulses. This enables us to give a possible explanation why no reflection was observed in light pulse photographs in some vicinity of the air-resin interface, given in L. Gao, J. Liang, C. Li, and L. V. Wang, Nature 516 (2014) 74-77. We suggest how to modify the experimental setup so as to observe the reflected pulse.
We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the properties, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا