No Arabic abstract
Using a novel approach to ultrafast resonant pump-probe spectroscopy we investigate the spectral shape and dynamics of absorption features related to the A exciton in an hBN/MoSe$_2$/hBN van der Waals heterostructure. While in a pure two-level system a pump-probe experiment measures the occupation or the polarization dynamics, depending on the time ordering of the pulse pair, in the transition metal dichalcogenide (TMD) system both quantities get thoroughly mixed by strong exciton-exciton interaction. We find that for short positive delays the spectral lines experience pronounced changes in their shape and energy and they relax to the original situation on a picosecond time scale. For negative delays distinctive spectral oscillations appear indicating the first-time observation of perturbed free induction decay for a TMD system. The comparison between co-circular and cross-circular excitation schemes further allows us to investigate the rapid inter-valley scattering. By considering a three-level system as a minimal model including the local field effect, excitation induced dephasing and scattering between the excited states we explain all phenomena observed in the experiment with excellent consistency. Our handy model can be even further reduced to two levels in the case of a co-circular excitation, for which we derive analytic expressions to describe the detected signals. This allows us to trace back the spectral shapes and shifts to the impact of local field effect and excitation induced dephasing thus fully reproducing the complex behavior of the observed effects.
We use the terahertz (THz) emission spectroscopy to study femtosecond photocurrent dynamics in the prototypical 2D semiconductor, transition metal dichalcogenide MoSe$_2$. We identify several distinct mechanisms producing THz radiation in response to an ultrashort ($30,$fs) optical excitation in a bilayer (BL) and a multilayer (ML) sample. In the ML, the THz radiation is generated at a picosecond timescale by out-of-plane currents due to the drift of photoexcited charge carriers in the surface electric field. The BL emission is generated by an in-plane shift current. Finally, we observe oscillations at about $23,$THz in the emission from the BL sample. We attribute the oscillations to quantum beats between two excitonic states with energetic separation of $sim100,$meV.
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculiar non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remarkable transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.
Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently average over local chemical, compositional, and electronic inhomogeneities. Here we circumvent this deficiency and introduce pump-probe infrared spectroscopy with ~20 nm spatial resolution, far below the diffraction limit, which is accomplished using a scattering scanning near-field optical microscope (s-SNOM). This technique allows us to investigate exfoliated graphene single-layers on SiO2 at technologically significant mid-infrared (MIR) frequencies where the local optical conductivity becomes experimentally accessible through the excitation of surface plasmons via the s-SNOM tip. Optical pumping at near-infrared (NIR) frequencies prompts distinct changes in the plasmonic behavior on 200 femtosecond (fs) time scales. The origin of the pump-induced, enhanced plasmonic response is identified as an increase in the effective electron temperature up to several thousand Kelvin, as deduced directly from the Drude weight associated with the plasmonic resonances.
We explore the influence of the nanoporous structure on the thermal relaxation of electrons and holes excited by ultrashort laser pulses ($sim 7$ fs) in thin gold films. Plasmon decay into hot electron-hole pairs results in the generation of a Fermi-Dirac distribution thermalized at a temperature $T_{mathrm{e}}$ higher than the lattice temperature $T_{mathrm{l}}$. The relaxation times of the energy exchange between electrons and lattice, here measured by pump-probe spectroscopy, is slowed down by the nanoporous structure, resulting in much higher peak $T_{mathrm{e}}$ than for bulk gold films. The electron-phonon coupling constant and the Debye temperature are found to scale with the metal filling factor $f$ and a two-temperature model reproduces the data. The results open the way for electron temperature control in metals by engineering of the nanoporous geometry.