Do you want to publish a course? Click here

Uncertainty Principles in Krein Space

54   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Uncertainty relations between two general non-commuting self-adjoint operators are derived in a Krein space. All of these relations involve a Krein space induced fundamental symmetry operator, $J$, while some of these generalized relations involve an anti-commutator, a commutator, and various other nonlinear functions of the two operators in question. As a consequence there exist classes of non-self-adjoint operators on Hilbert spaces such that the non-vanishing of their commutator implies an uncertainty relation. All relations include the classical Heisenberg uncertainty principle as formulated in Hilbert Space by Von Neumann and others. In addition, we derive an operator dependent (nonlinear) commutator uncertainty relation in Krein space.



rate research

Read More

Two concepts, very different in nature, have proved to be useful in analytical and numerical studies of spectral stability: (i) the Krein signature of an eigenvalue, a quantity usually defined in terms of the relative orientation of certain subspaces that is capable of detecting the structural instability of imaginary eigenvalues and hence their potential for moving into the right half-plane leading to dynamical instability under perturbation of the system, and (ii) the Evans function, an analytic function detecting the location of eigenvalues. One might expect these two concepts to be related, but unfortunately examples demonstrate that there is no way in general to deduce the Krein signature of an eigenvalue from the Evans function. The purpose of this paper is to recall and popularize a simple graphical interpretation of the Krein signature well-known in the spectral theory of polynomial operator pencils. This interpretation avoids altogether the need to view the Krein signature in terms of root subspaces and their relation to indefinite quadratic forms. To demonstrate the utility of this graphical interpretation of the Krein signature, we use it to define a simple generalization of the Evans function -- the Evans-Krein function -- that allows the calculation of Krein signatures in a way that is easy to incorporate into existing Evans function evaluation codes at virtually no additional computational cost. The graphical Krein signature also enables us to give elegant proofs of index theorems for linearized Hamiltonians in the finite dimensional setting: a general result implying as a corollary the generalized Vakhitov-Kolokolov criterion (or Grillakis-Shatah-Strauss criterion) and a count of real eigenvalues for linearized Hamiltonian systems in canonical form. These applications demonstrate how the simple graphical nature of the Krein signature may be easily exploited.
General dynamic properties like controllability and simulability of spin systems, fermionic and bosonic systems are investigated in terms of symmetry. Symmetries may be due to the interaction topology or due to the structure and representation of the system and control Hamiltonians. In either case, they obviously entail constants of motion. Conversely, the absence of symmetry implies irreducibility and provides a convenient necessary condition for full controllability much easier to assess than the well-established Lie-algebra rank condition. We give a complete lattice of irreducible simple subalgebras of su(2^n) for up to n=15 qubits. It complements the symmetry condition by allowing for easy tests solving homogeneous linear equations to filter irreducible unitary representations of other candidate algebras of classical type as well as of exceptional types. --- The lattice of irreducible simple subalgebras given also determines mutual simulability of dynamic systems of spin or fermionic or bosonic nature. We illustrate how controlled quadratic fermionic (and bosonic) systems can be simulated by spin systems and in certain cases also vice versa.
We introduce a notion of Krein C*-module over a C*-algebra and more generally over a Krein C*-algebra. Some properties of Krein C*-modules and their categories are investigated.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
According to several quantum gravity theories there is an effective minimal length beyond which space cannot be probed, possibly the Planck length. It has been suggested that this fundamental limit implies a generalised uncertainty principle (GUP) and corresponding modification of the canonical position-momentum commutation relations. Some of these modified relations are also consistent with general principles that may be supposed of any physical theory. Here we study the noisy behaviour of an optomechanical system assuming a certain commonly studied modified commutator. From recent observations of radiation pressure noise in tabletop optomechanical experiments as well as the position noise spectrum of Advanced LIGO we derive bounds on the modified commutator, which may be used to constrain the minimal length. We find how such experiments can be adjusted to provide significant improvements in such bounds, potentially surpassing those from sub-atomic measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا