No Arabic abstract
Bistability is a ubiquitous phenomenon in life sciences. In this paper, two kinds of bistable structures in dynamical systems are studied: One is two one-point attractors, another is a one-point attractor accompanied by a cycle attractor. By the Conley index theory, we prove that there exist other isolated invariant sets besides the two attractors, and also obtain the possible components and their configuration. Moreover, we find that there is always a separatrix or cycle separatrix, which separates the two attractors. Finally, the biological meanings and implications of these structures are given and discussed.
Conley index theory is a very powerful tool in the study of dynamical systems, differential equations and bifurcation theory. In this paper, we make an attempt to generalize the Conley index to discrete random dynamical systems. And we mainly follow the Conley index for maps given by Franks and Richeson in [6]. Furthermore, we simply discuss the relations of isolated invariant sets between time-continuous random dynamical systems and the corresponding time-$h$ maps. For applications we give several examples to illustrate our results.
The topological method for the reconstruction of dynamics from time series [K. Mischaikow, M. Mrozek, J. Reiss, A. Szymczak. Construction of Symbolic Dynamics from Experimental Time Series, Physical Review Letters, 82 (1999), 1144-1147] is reshaped to improve its range of applicability, particularly in the presence of sparse data and strong expansion. The improvement is based on a multivalued map representation of the data. However, unlike the previous approach, it is not required that the representation has a continuous selector. Instead of a selector, a recently developed new version of Conley index theory for multivalued maps [B. Batko and M. Mrozek. Weak index pairs and the Conley index for discrete multivalued dynamical systems, SIAM J. Applied Dynamical Systems 15 (2016), 1143-1162], [B.Batko. Weak index pairs and the Conley index for discrete multivalued dynamical systems. Part II: properties of the Index, SIAM J. Applied Dynamical Systems 16 (2017), 1587-1617] is used in computations. The existence of a continuous, single-valued generator of the relevant dynamics is guaranteed in the vicinity of the graph of the multivalued map constructed from data. Some numerical examples based on time series derived from the iteration of Henon type maps are presented.
Multivector fields provide an avenue for studying continuous dynamical systems in a combinatorial framework. There are currently two approaches in the literature which use persistent homology to capture changes in combinatorial dynamical systems. The first captures changes in the Conley index, while the second captures changes in the Morse decomposition. However, such approaches have limitations. The former approach only describes how the Conley index changes across a selected isolated invariant set though the dynamics can be much more complicated than the behavior of a single isolated invariant set. Likewise, considering a Morse decomposition omits much information about the individual Morse sets. In this paper, we propose a method to summarize changes in combinatorial dynamical systems by capturing changes in the so-called Conley-Morse graphs. A Conley-Morse graph contains information about both the structure of a selected Morse decomposition and about the Conley index at each Morse set in the decomposition. Hence, our method summarizes the changing structure of a sequence of dynamical systems at a finer granularity than previous approaches.
In the context of Mathers theory of Lagrangian systems, we study the decomposition in chain-transitive classes of the Mather invariant sets. As an application, we prove, under appropriate hypotheses, the semi-continuity of the so-called Aubry set as a function of the Lagrangian.
The Conley theory has a tool to guarantee the existence of periodic trajectories in isolating neighborhoods of semi-dynamical systems. We prove that the positive trajectories generated by a piecewise-smooth vector field $Z=(X, Y)$ defined in a closed manifold of three dimensions without the scape region produces a semi-dynamical system. Thus, we have built a semiflow that allows us to apply the classical Conley theory. Furthermore, we use it to guarantee the existence of periodic orbits in this class of piecewise-smooth vector fields.