No Arabic abstract
The Conley theory has a tool to guarantee the existence of periodic trajectories in isolating neighborhoods of semi-dynamical systems. We prove that the positive trajectories generated by a piecewise-smooth vector field $Z=(X, Y)$ defined in a closed manifold of three dimensions without the scape region produces a semi-dynamical system. Thus, we have built a semiflow that allows us to apply the classical Conley theory. Furthermore, we use it to guarantee the existence of periodic orbits in this class of piecewise-smooth vector fields.
Let Y and X denote C^k vector fields on a possibly noncompact surface with empty boundary, k >0. Say that Y tracks X if the dynamical system it generates locally permutes integral curves of X. Let K be a locally maximal compact set of zeroes of X. THEOREM Assume the Poincare-Hopf index of X at K is nonzero, and the k-jet of X at each point of K is nontrivial. If g is a supersolvable Lie algebra of C^k vector fields that track X, then the elements of g have a common zero in K. Applications are made to attractors and transformation groups.
Let $(M,g)$ be a closed Riemannian manifold and $L:TMrightarrow mathbb R$ be a Tonelli Lagrangian. In this thesis we study the existence of orbits of the Euler-Lagrange flow associated with $L$ satisfying suitable boundary conditions. We first look for orbits connecting two given closed submanifolds of $M$ satisfying the conormal boundary conditions: We introduce the Ma~ne critical value that is relevant for the problem and prove existence results for supercritical and subcritical energies; we also complement these with counterexamples, thus showing the sharpness of our results. We then move to the problem of finding periodic orbits: We provide an existence result of periodic orbits for non-aspherical manifolds generalizing the Lusternik-Fet Theorem, and a multiplicity result in case the configuration space is the 2-torus.
It is proved that a certain type of monotone flow has a global period provided periodic points are dense.
In this paper, we first show that any nonlinear monotonic increasing contracting maps with one discontinuous point on a unit interval which has an unique periodic point with period $n$ conjugates to a piecewise linear contracting map which has periodic point with same period. Second, we consider one parameter family of monotonic increasing contracting maps, and show that the family has the periodic structure called Arnold tongue for the parameter which is associated with the Farey series. This implies that there exist a parameter set with a positive Lebesgue measure such that the map has a periodic point with an arbitrary period. Moreover, the parameter set with period $(m+n)$ exists between the parameter set with period $m$ and $n$.
Let X be a connected open set in n-dimensional Euclidean space, partially ordered by a closed convex cone K with nonempty interior: y > x if and only if y-x is nonzero and in K. Theorem: If F is a monotone local flow in X whose periodic points are dense in X, then F is globally periodic.