Do you want to publish a course? Click here

Warm millimetre dust in protoplanetary discs near massive stars

157   0   0.0 ( 0 )
 Added by Thomas Haworth PhD
 Publication date 2021
  fields Physics
and research's language is English
 Authors T. J. Haworth




Ask ChatGPT about the research

Dust plays a key role in the formation of planets and its emission also provides one of our most accessible views of protoplanetary discs. If set by radiative equilibrium with the central star, the temperature of dust in the disc plateaus at around $10-20$K in the outer regions. However sufficiently nearby massive stars can heat the outer disc to substantially higher temperatures. In this paper we study the radiative equilibrium temperature of discs in the presence of massive external sources and gauge the effect that it has on millimetre dust mass estimates. Since millimetre grains are not entrained in any wind we focus on geometrically simple 2D-axisymmetric disc models using radiative transfer calculations with both the host star and an external source. Recent surveys have searched for evidence of massive stars influencing disc evolution using disc properties as a function of projected separation. In assuming a disc temperature of $20$K for a disc a distance $D$ from a strong radiation source, disc masses are overestimated by a factor that scales with $D^{-1/2}$ interior to the separation that external heating becomes important. This could significantly alter dust mass estimates of discs in close proximity to $theta^1$C in the Orion Nebular Cluster. We also make an initial assessment of the effect upon snow lines. Within a parsec of an O star like $theta^1$C a CO snow line no longer exists, though the water snow line is virtually unaffected except for very close separations of $leq0.01,$pc.



rate research

Read More

Spatially resolved observations of protoplanetary discs are revealing that their inner regions can be warped or broken from the outer disc. A few mechanisms are known to lead to such 3D structures; among them, the interaction with a stellar companion. We perform a 3D SPH simulation of a circumbinary disc misaligned by $60^circ$ with respect to the binary orbital plane. The inner disc breaks from the outer regions, precessing as a rigid body, and leading to a complex evolution. As the inner disc precesses, the misalignment angle between the inner and outer discs varies by more than $100^circ$. Different snapshots of the evolution are post-processed with a radiative transfer code, in order to produce observational diagnostics of the process. Even though the simulation was produced for the specific case of a circumbinary disc, most of the observational predictions hold for any disc hosting a precessing inner rim. Synthetic scattered light observations show strong azimuthal asymmetries, where the pattern depends strongly on the misalignment angle between inner and outer disc. The asymmetric illumination of the outer disc leads to azimuthal variations of the temperature structure, in particular in the upper layers, where the cooling time is short. These variations are reflected in asymmetric surface brightness maps of optically thick lines, as CO $J$=3-2. The kinematical information obtained from the gas lines is unique in determining the disc structure. The combination of scattered light images and (sub-)mm lines can distinguish between radial inflow and misaligned inner disc scenarios.
We use a suite of SPH simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star-disc properties. We also include passive irradiation from the host star using different models for the stellar luminosities. The critical disc-to-star mass ratio for axisymmetry (for which we produce criteria) increases significantly for low-mass stars. This could have important consequences for increasing the potential mass reservoir in a proto Trappist-1 system, since even the efficient Ormel et al. (2017) formation model will be influenced by processes like external photoevaporation, which can rapidly and dramatically deplete the dust reservoir. The aforementioned scaling of the critical $M_d/M_*$ for axisymmetry occurs in part because the Toomre $Q$ parameter has a linear dependence on surface density (which promotes instability) and only an $M_*^{1/2}$ dependence on shear (which reduces instability), but also occurs because, for a given $M_d/M_*$, the thermal evolution depends on the host star mass. The early phase stellar irradiation of the disc (for which the luminosity is much higher than at the zero age main sequence, particularly at low stellar masses) can also play a key role in significantly reducing the role of self-gravity, meaning that even Solar mass stars could support axisymmetric discs a factor two higher in mass than usually considered possible. We apply our criteria to the DSHARP discs with spirals, finding that self-gravity can explain the observed spirals so long as the discs are optically thick to the host star irradiation.
We estimate the mass loss rates of photoevaporative winds launched from the outer edge of protoplanetary discs impinged by an ambient radiation field. We focus on mild/moderate environments (the number of stars in the group/cluster is N ~ 50), and explore disc sizes ranging between 20 and 250 AU. We evaluate the steady-state structures of the photoevaporative winds by coupling temperature estimates obtained with a PDR code with 1D radial hydrodynamical equations. We also consider the impact of dust dragging and grain growth on the final mass loss rates. We find that these winds are much more significant than have been appreciated hitherto when grain growth is included in the modelling: in particular, mass loss rates > 1e-8 M_sun/yr are predicted even for modest background field strengths ( ~ 30 G_0) in the case of discs that extend to R > 150 AU. Grain growth significantly affects the final mass loss rates by reducing the average cross section at FUV wavelengths, and thus allowing a much more vigorous flow. The radial profiles of observable quantities (in particular surface density, temperature and velocity patterns) indicate that these winds have characteristic features that are now potentially observable with ALMA. In particular, such discs should have extended gaseous emission that is dust depleted in the outer regions, characterised by a non-Keplerian rotation curve, and with a radially increasing temperature gradient.
218 - Zs. Regaly , E. Vorobyov 2017
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices are efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01<=M_disc/M_*<=0.1. Here we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low mass, 0.001<=M_disc/M_*<=0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with M_disc/M_*>=0.005 where initially the Toomre Q-parameter was <=50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex, and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a GNG model as long as the disc viscosity is low, i.e. alpha_dz<=10^-5.
Line spectra of 68 Taurus T Tauri stars were obtained with the Herschel-PACS (Photodetector Array Camera & Spectrometer) instrument as part of the GASPS (Gas Evolution in Protoplanetary Systems) survey of protoplanetary discs. A careful examination of the line scans centred on the [OI] 63.18 microns fine-structure line unveiled a line at 63.32 micron in some of these spectra. We identify this line with a transition of ortho-water. It is detected confidently (i.e., >3 sigma) in eight sources, i.e., 24% of the sub-sample with gas-rich discs. Several statistical tests were used to search for correlations with other disc and stellar parameters such as line fluxes of [OI] 6300 Armstrong and 63.18 microns; X-ray luminosity and continuum levels at 63 microns and 850 microns. Correlations are found between the water line fluxes and the [OI] 63.18 microns line luminosity, the dust continuum, and possibly with the stellar X-ray luminosity. This is the first time that this line of warm water vapour has been detected in protoplanetary discs. We discuss its origins, in particular whether it comes from the inner disc and/or disc surface or from shocks in outflows and jets. Our analysis favours a disc origin, with the observed water vapour line produced within 2-3AU from the central stars, where the gas temperature is of the order of 500-600 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا