Do you want to publish a course? Click here

Signatures of broken protoplanetary discs in scattered light and in sub-millimetre observations

129   0   0.0 ( 0 )
 Added by Stefano Facchini Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatially resolved observations of protoplanetary discs are revealing that their inner regions can be warped or broken from the outer disc. A few mechanisms are known to lead to such 3D structures; among them, the interaction with a stellar companion. We perform a 3D SPH simulation of a circumbinary disc misaligned by $60^circ$ with respect to the binary orbital plane. The inner disc breaks from the outer regions, precessing as a rigid body, and leading to a complex evolution. As the inner disc precesses, the misalignment angle between the inner and outer discs varies by more than $100^circ$. Different snapshots of the evolution are post-processed with a radiative transfer code, in order to produce observational diagnostics of the process. Even though the simulation was produced for the specific case of a circumbinary disc, most of the observational predictions hold for any disc hosting a precessing inner rim. Synthetic scattered light observations show strong azimuthal asymmetries, where the pattern depends strongly on the misalignment angle between inner and outer disc. The asymmetric illumination of the outer disc leads to azimuthal variations of the temperature structure, in particular in the upper layers, where the cooling time is short. These variations are reflected in asymmetric surface brightness maps of optically thick lines, as CO $J$=3-2. The kinematical information obtained from the gas lines is unique in determining the disc structure. The combination of scattered light images and (sub-)mm lines can distinguish between radial inflow and misaligned inner disc scenarios.



rate research

Read More

156 - T. J. Haworth 2021
Dust plays a key role in the formation of planets and its emission also provides one of our most accessible views of protoplanetary discs. If set by radiative equilibrium with the central star, the temperature of dust in the disc plateaus at around $10-20$K in the outer regions. However sufficiently nearby massive stars can heat the outer disc to substantially higher temperatures. In this paper we study the radiative equilibrium temperature of discs in the presence of massive external sources and gauge the effect that it has on millimetre dust mass estimates. Since millimetre grains are not entrained in any wind we focus on geometrically simple 2D-axisymmetric disc models using radiative transfer calculations with both the host star and an external source. Recent surveys have searched for evidence of massive stars influencing disc evolution using disc properties as a function of projected separation. In assuming a disc temperature of $20$K for a disc a distance $D$ from a strong radiation source, disc masses are overestimated by a factor that scales with $D^{-1/2}$ interior to the separation that external heating becomes important. This could significantly alter dust mass estimates of discs in close proximity to $theta^1$C in the Orion Nebular Cluster. We also make an initial assessment of the effect upon snow lines. Within a parsec of an O star like $theta^1$C a CO snow line no longer exists, though the water snow line is virtually unaffected except for very close separations of $leq0.01,$pc.
Three-dimensional hydrodynamic numerical simulations have demonstrated that the structure of a protoplanetary disc may be strongly affected by a planet orbiting in a plane that is misaligned to the disc. When the planet is able to open a gap, the disc is separated into an inner, precessing disc and an outer disc with a warp. In this work, we compute infrared scattered light images to investigate the observational consequences of such an arrangement. We find that an inner disc misaligned by a less than a degree to the outer disc is indeed able to cast a shadow at larger radii. In our simulations a planet of around 6 Jupiter masses inclined by around 2 degrees is enough to warp the disc and cast a shadow with a depth of more than 10% of the average flux at that radius. We also demonstrate that warp in the outer disc can cause a variation in the azimuthal brightness profile at large radii. Importantly, this latter effect is a function of the distance from the star and is most prominent in the outer disc. We apply our model to the TW Hya system, where a misaligned, precessing inner disc has been invoked to explain an recently observed shadow in the outer disc. Consideration of the observational constraints suggest that an inner disc precessing due to a misaligned planet is an unlikely explanation for the features found in TW Hya.
We present ATCA results of a 3 and 7 mm continuum survey of 20 T Tauri stars in the Chamaeleon and Lupus star forming regions. This survey aims to identify protoplanetary discs with signs of grain growth. We detected 90% of the sources at 3 and 7 mm, and determined the spectral slopes, dust opacity indices and dust disc masses. We also present temporal monitoring results of a small sub-set of sources at 7, 15 mm and 3+6 cm to investigate grain growth to cm sizes and constrain emission mechanisms in these sources. Additionally, we investigated the potential correlation between grain growth signatures in the infrared (10 mu m silicate feature) and millimetre (1-3 mm spectral slope, {alpha}). Eleven sources at 3 and 7 mm have dominant thermal dust emission up to 7 mm, with 7 of these having a 1-3 mm dust opacity index less than unity, suggesting grain growth up to at least mm sizes. The Chamaeleon sources observed at 15 mm and beyond show the presence of excess emission from an ionised wind and/or chromo- spheric emission. Long-timescale monitoring at 7 mm indicated that cm-sized pebbles are present in at least four sources. Short-timescale monitoring at 15 mm suggests the excess emission is from thermal free-free emission. Finally, a weak correlation was found between the strength of the 10 mum feature and {alpha}, suggesting simultaneous dust evolution of the inner and outer parts of the disc. This survey shows that grain growth up to cm-sized pebbles and the presence of excess emission at 15 mm and beyond are common in these systems, and that temporal monitoring is required to disentangle these emission mechanisms.
There is growing theoretical and observational evidence that protoplanetary disc evolution may be significantly affected by the canonical levels of far ultraviolet (FUV) radiation found in a star forming environment, leading to substantial stripping of material from the disc outer edge even in the absence of nearby massive stars. In this paper we perform the first full radiation hydrodynamic simulations of the flow from the outer rim of protoplanetary discs externally irradiated by such intermediate strength FUV fields, including direct modelling of the photon dominated region (PDR) which is required to accurately compute the thermal properties. We find excellent agreement between our models and the semi-analytic models of Facchini et al. (2016) for the profile of the flow itself, as well as the mass loss rate and location of their critical radius. This both validates their results (which differed significantly from prior semi-analytic estimates) and our new numerical method, the latter of which can now be applied to elements of the problem that the semi--analytic approaches are incapable of modelling. We also obtain the composition of the flow, but given the simple geometry of our models we can only hint at some diagnostics for future observations of externally irradiated discs at this stage. We also discuss the potential for these models as benchmarks for future photochemical-dynamical codes.
We estimate the mass loss rates of photoevaporative winds launched from the outer edge of protoplanetary discs impinged by an ambient radiation field. We focus on mild/moderate environments (the number of stars in the group/cluster is N ~ 50), and explore disc sizes ranging between 20 and 250 AU. We evaluate the steady-state structures of the photoevaporative winds by coupling temperature estimates obtained with a PDR code with 1D radial hydrodynamical equations. We also consider the impact of dust dragging and grain growth on the final mass loss rates. We find that these winds are much more significant than have been appreciated hitherto when grain growth is included in the modelling: in particular, mass loss rates > 1e-8 M_sun/yr are predicted even for modest background field strengths ( ~ 30 G_0) in the case of discs that extend to R > 150 AU. Grain growth significantly affects the final mass loss rates by reducing the average cross section at FUV wavelengths, and thus allowing a much more vigorous flow. The radial profiles of observable quantities (in particular surface density, temperature and velocity patterns) indicate that these winds have characteristic features that are now potentially observable with ALMA. In particular, such discs should have extended gaseous emission that is dust depleted in the outer regions, characterised by a non-Keplerian rotation curve, and with a radially increasing temperature gradient.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا