No Arabic abstract
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models. To tackle this problem, we propose an approach that relies on training purely with synthetically generated theorems, without any human data aside from axioms. We use these theorems to train a neurally-guided saturation-based prover. Our neural prover outperforms the state-of-the-art E-prover on this synthetic data in both time and search steps, and shows significant transfer to the unseen human-written theorems from the TPTP library, where it solves 72% of first-order problems without equality.
I propose a system for Automated Theorem Proving in higher order logic using deep learning and eschewing hand-constructed features. Holophrasm exploits the formalism of the Metamath language and explores partial proof trees using a neural-network-augmented bandit algorithm and a sequence-to-sequence model for action enumeration. The system proves 14% of its test theorems from Metamaths set.mm module.
Traditional automated theorem provers have relied on manually tuned heuristics to guide how they perform proof search. Recently, however, there has been a surge of interest in the design of learning mechanisms that can be integrated into theorem provers to improve their performance automatically. In this work, we introduce TRAIL, a deep learning-based approach to theorem proving that characterizes core elements of saturation-based theorem proving within a neural framework. TRAIL leverages (a) an effective graph neural network for representing logical formulas, (b) a novel neural representation of the state of a saturation-based theorem prover in terms of processed clauses and available actions, and (c) a novel representation of the inference selection process as an attention-based action policy. We show through a systematic analysis that these components allow TRAIL to significantly outperform previous reinforcement learning-based theorem provers on two standard benchmark datasets (up to 36% more theorems proved). In addition, to the best of our knowledge, TRAIL is the first reinforcement learning-based approach to exceed the performance of a state-of-the-art traditional theorem prover on a standard theorem proving benchmark (solving up to 17% more problems).
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action policy. We show through systematic analysis that these mechanisms allow TRAIL to significantly outperform previous reinforcement-learning-based theorem provers on two benchmark datasets for first-order logic automated theorem proving (proving around 15% more theorems).
Automated theorem proving in first-order logic is an active research area which is successfully supported by machine learning. While there have been various proposals for encoding logical formulas into numerical vectors -- from simple strings to more involved graph-based embeddings -- little is known about how these different encodings compare. In this paper, we study and experimentally compare pattern-based embeddings that are applied in current systems with popular graph-based encodings, most of which have not been considered in the theorem proving context before. Our experiments show that the advantages of simpler encoding schemes in terms of runtime are outdone by more complex graph-based embeddings, which yield more efficient search strategies and simpler proofs. To support this, we present a detailed analysis across several dimensions of theorem prover performance beyond just proof completion rate, thus providing empirical evidence to help guide future research on neural-guided theorem proving towards the most promising directions.
In this paper we present a cut-free sequent calculus, called SeqS, for some standard conditional logics, namely CK, CK+ID, CK+MP and CK+MP+ID. The calculus uses labels and transition formulas and can be used to prove decidability and space complexity bounds for the respective logics. We also present CondLean, a theorem prover for these logics implementing SeqS calculi written in SICStus Prolog.