Do you want to publish a course? Click here

Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles

90   0   0.0 ( 0 )
 Added by Shuai Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The technology of dynamic map fusion among networked vehicles has been developed to enlarge sensing ranges and improve sensing accuracies for individual vehicles. This paper proposes a federated learning (FL) based dynamic map fusion framework to achieve high map quality despite unknown numbers of objects in fields of view (FoVs), various sensing and model uncertainties, and missing data labels for online learning. The novelty of this work is threefold: (1) developing a three-stage fusion scheme to predict the number of objects effectively and to fuse multiple local maps with fidelity scores; (2) developing an FL algorithm which fine-tunes feature models (i.e., representation learning networks for feature extraction) distributively by aggregating model parameters; (3) developing a knowledge distillation method to generate FL training labels when data labels are unavailable. The proposed framework is implemented in the Car Learning to Act (CARLA) simulation platform. Extensive experimental results are provided to verify the superior performance and robustness of the developed map fusion and FL schemes.



rate research

Read More

The rapid increase in the percentage of chronic disease patients along with the recent pandemic pose immediate threats on healthcare expenditure and elevate causes of death. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, to improve services, access and scalability, while reducing costs. Reinforcement Learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for diverse applications and services. Thus, we conduct in this paper a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. This paper can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview for the I-health systems challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, Deep RL (DRL), and multi-agent RL models. After that, we provide a deep literature review for the applications of RL in I-health systems. In particular, three main areas have been tackled, i.e., edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and outline future research directions in driving the future success of RL in I-health systems, which opens the door for exploring some interesting and unsolved problems.
Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data, is vulnerable to dirty-label data poisoning adversarial attacks. We claim that the federated learning model has to avoid those kind of adversarial attacks through filtering out the clients that manipulate the local data. We propose a dynamic federated learning model that dynamically discards those adversarial clients, which allows to prevent the corruption of the global learning model. We evaluate the dynamic discarding of adversarial clients deploying a deep learning classification model in a federated learning setting, and using the EMNIST Digits and Fashion MNIST image classification datasets. Likewise, we analyse the capacity of detecting clients with poor data distribution and reducing the number of rounds of learning by selecting the clients to aggregate. The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model, discards the adversarial and poor clients and reduces the rounds of learning.
Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSPs limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSPs limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.
127 - Peng Sun , Jiechao Xiong , Lei Han 2020
Competitive Self-Play (CSP) based Multi-Agent Reinforcement Learning (MARL) has shown phenomenal breakthroughs recently. Strong AIs are achieved for several benchmarks, including Dota 2, Glory of Kings, Quake III, StarCraft II, to name a few. Despite the success, the MARL training is extremely data thirsty, requiring typically billions of (if not trillions of) frames be seen from the environment during training in order for learning a high performance agent. This poses non-trivial difficulties for researchers or engineers and prevents the application of MARL to a broader range of real-world problems. To address this issue, in this manuscript we describe a framework, referred to as TLeague, that aims at large-scale training and implements several main-stream CSP-MARL algorithms. The training can be deployed in either a single machine or a cluster of hybrid machines (CPUs and GPUs), where the standard Kubernetes is supported in a cloud native manner. TLeague achieves a high throughput and a reasonable scale-up when performing distributed training. Thanks to the modular design, it is also easy to extend for solving other multi-agent problems or implementing and verifying MARL algorithms. We present experiments over StarCraft II, ViZDoom and Pommerman to show the efficiency and effectiveness of TLeague. The code is open-sourced and available at https://github.com/tencent-ailab/tleague_projpage
Medical diagnostic image analysis (e.g., CT scan or X-Ray) using machine learning is an efficient and accurate way to detect COVID-19 infections. However, sharing diagnostic images across medical institutions is usually not allowed due to the concern of patients privacy. This causes the issue of insufficient datasets for training the image classification model. Federated learning is an emerging privacy-preserving machine learning paradigm that produces an unbiased global model based on the received updates of local models trained by clients without exchanging clients local data. Nevertheless, the default setting of federated learning introduces huge communication cost of transferring model updates and can hardly ensure model performance when data heterogeneity of clients heavily exists. To improve communication efficiency and model performance, in this paper, we propose a novel dynamic fusion-based federated learning approach for medical diagnostic image analysis to detect COVID-19 infections. First, we design an architecture for dynamic fusion-based federated learning systems to analyse medical diagnostic images. Further, we present a dynamic fusion method to dynamically decide the participating clients according to their local model performance and schedule the model fusion-based on participating clients training time. In addition, we summarise a category of medical diagnostic image datasets for COVID-19 detection, which can be used by the machine learning community for image analysis. The evaluation results show that the proposed approach is feasible and performs better than the default setting of federated learning in terms of model performance, communication efficiency and fault tolerance.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا