No Arabic abstract
With the freight delivery demands and shipping costs increasing rapidly, intelligent control of fleets to enable efficient and cost-conscious solutions becomes an important problem. In this paper, we propose DeepFreight, a model-free deep-reinforcement-learning-based algorithm for multi-transfer freight delivery, which includes two closely-collaborative components: truck-dispatch and package-matching. Specifically, a deep multi-agent reinforcement learning framework called QMIX is leveraged to learn a dispatch policy, with which we can obtain the multi-step joint dispatch decisions for the fleet with respect to the delivery requests. Then an efficient multi-transfer matching algorithm is executed to assign the delivery requests to the trucks. Also, DeepFreight is integrated with a Mixed-Integer Linear Programming optimizer for further optimization. The evaluation results show that the proposed system is highly scalable and ensures a 100% delivery success while maintaining low delivery time and fuel consumption.
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behaviors of visual environments in imagination by leveraging an internal World Model of the environment. Improved sample efficiency can also be achieved by reusing knowledge from previously learned tasks, but transfer learning is still a challenging topic in RL. Parameter-based transfer learning is generally done using an all-or-nothing approach, where the networks parameters are either fully transferred or randomly initialized. In this work we present a simple alternative approach: fractional transfer learning. The idea is to transfer fractions of knowledge, opposed to discarding potentially useful knowledge as is commonly done with random initialization. Using the World Model-based Dreamer algorithm, we identify which type of components this approach is applicable to, and perform experiments in a new multi-source transfer learning setting. The results show that fractional transfer learning often leads to substantially improved performance and faster learning compared to learning from scratch and random initialization.
Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to universal complex tasks. Among them, the low efficiency of data utilization in model-free reinforcement algorithms is of great concern. In contrast, the model-based reinforcement learning algorithms can reveal underlying dynamics in learning environments and seldom suffer the data utilization problem. To address the problem, a model-based reinforcement learning algorithm with attention mechanism embedded is proposed as an extension of World Models in this paper. We learn the environment model through Mixture Density Network Recurrent Network(MDN-RNN) for agents to interact, with combinations of variational auto-encoder(VAE) and attention incorporated in state value estimates during the process of learning policy. In this way, agent can learn optimal policies through less interactions with actual environment, and final experiments demonstrate the effectiveness of our model in control problem.
Despite the rich theoretical foundation of model-based deep reinforcement learning (RL) agents, their effectiveness in real-world robotics-applications is less studied and understood. In this paper, we, therefore, investigate how such agents generalize to real-world autonomous-vehicle control-tasks, where advanced model-free deep RL algorithms fail. In particular, we set up a series of time-lap tasks for an F1TENTH racing robot, equipped with high-dimensional LiDAR sensors, on a set of test tracks with a gradual increase in their complexity. In this continuous-control setting, we show that model-based agents capable of learning in imagination, substantially outperform model-free agents with respect to performance, sample efficiency, successful task completion, and generalization. Moreover, we show that the generalization ability of model-based agents strongly depends on the observation-model choice. Finally, we provide extensive empirical evidence for the effectiveness of model-based agents provided with long enough memory horizons in sim2real tasks.
Several multiagent reinforcement learning (MARL) algorithms have been proposed to optimize agents decisions. Due to the complexity of the problem, the majority of the previously developed MARL algorithms assumed agents either had some knowledge of the underlying game (such as Nash equilibria) and/or observed other agents actions and the rewards they received. We introduce a new MARL algorithm called the Weighted Policy Learner (WPL), which allows agents to reach a Nash Equilibrium (NE) in benchmark 2-player-2-action games with minimum knowledge. Using WPL, the only feedback an agent needs is its own local reward (the agent does not observe other agents actions or rewards). Furthermore, WPL does not assume that agents know the underlying game or the corresponding Nash Equilibrium a priori. We experimentally show that our algorithm converges in benchmark two-player-two-action games. We also show that our algorithm converges in the challenging Shapleys game where previous MARL algorithms failed to converge without knowing the underlying game or the NE. Furthermore, we show that WPL outperforms the state-of-the-art algorithms in a more realistic setting of 100 agents interacting and learning concurrently. An important aspect of understanding the behavior of a MARL algorithm is analyzing the dynamics of the algorithm: how the policies of multiple learning agents evolve over time as agents interact with one another. Such an analysis not only verifies whether agents using a given MARL algorithm will eventually converge, but also reveals the behavior of the MARL algorithm prior to convergence. We analyze our algorithm in two-player-two-action games and show that symbolically proving WPLs convergence is difficult, because of the non-linear nature of WPLs dynamics, unlike previous MARL algorithms that had either linear or piece-wise-linear dynamics. Instead, we numerically solve WPLs dynamics differential equations and compare the solution to the dynamics of previous MARL algorithms.
In multi-agent reinforcement learning, discovering successful collective behaviors is challenging as it requires exploring a joint action space that grows exponentially with the number of agents. While the tractability of independent agent-wise exploration is appealing, this approach fails on tasks that require elaborate group strategies. We argue that coordinating the agents policies can guide their exploration and we investigate techniques to promote such an inductive bias. We propose two policy regularization methods: TeamReg, which is based on inter-agent action predictability and CoachReg that relies on synchronized behavior selection. We evaluate each approach on four challenging continuous control tasks with sparse rewards that require varying levels of coordination as well as on the discrete action Google Research Football environment. Our experiments show improved performance across many cooperative multi-agent problems. Finally, we analyze the effects of our proposed methods on the policies that our agents learn and show that our methods successfully enforce the qualities that we propose as proxies for coordinated behaviors.