Do you want to publish a course? Click here

The Climate Extended Risk Model (CERM)

78   0   0.0 ( 0 )
 Added by Josselin Garnier
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

This paper is directed to the financial community and focuses on the financial risks associated with climate change. It, specifically, addresses the estimate of climate risk embedded within a bank loan portfolio. During the 21st century, man-made carbon dioxide emissions in the atmosphere will raise global temperatures, resulting in severe and unpredictable physical damage across the globe. Another uncertainty associated with climate, known as the energy transition risk, comes from the unpredictable pace of political and legal actions to limit its impact. The Climate Extended Risk Model (CERM) adapts well known credit risk models. It proposes a method to calculate incremental credit losses on a loan portfolio that are rooted into physical and transition risks. The document provides detailed description of the model hypothesis and steps. This work was initiated by the association Green RWA (Risk Weighted Assets). It was written in collaboration with Jean-Baptiste Gaudemet, Anne Gruz, and Olivier Vinciguerra ([email protected]), who contributed their financial and risk expertise, taking care of its application to a pilot-portfolio. It extends the model proposed in a first white paper published by Green RWA (https://www.greenrwa.org/).



rate research

Read More

The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.
Deep hedging (Buehler et al. 2019) is a versatile framework to compute the optimal hedging strategy of derivatives in incomplete markets. However, this optimal strategy is hard to train due to action dependence, that is, the appropriate hedging action at the next step depends on the current action. To overcome this issue, we leverage the idea of a no-transaction band strategy, which is an existing technique that gives optimal hedging strategies for European options and the exponential utility. We theoretically prove that this strategy is also optimal for a wider class of utilities and derivatives including exotics. Based on this result, we propose a no-transaction band network, a neural network architecture that facilitates fast training and precise evaluation of the optimal hedging strategy. We experimentally demonstrate that for European and lookback options, our architecture quickly attains a better hedging strategy in comparison to a standard feed-forward network.
79 - Victor Olkhov 2020
This paper presents probability distributions for price and returns random processes for averaging time interval {Delta}. These probabilities determine properties of price and returns volatility. We define statistical moments for price and returns random processes as functions of the costs and the volumes of market trades aggregated during interval {Delta}. These sets of statistical moments determine characteristic functionals for price and returns probability distributions. Volatilities are described by first two statistical moments. Second statistical moments are described by functions of second degree of the cost and the volumes of market trades aggregated during interval {Delta}. We present price and returns volatilities as functions of number of trades and second degree costs and volumes of market trades aggregated during interval {Delta}. These expressions support numerous results on correlations between returns volatility, number of trades and the volume of market transactions. Forecasting the price and returns volatilities depend on modeling the second degree of the costs and the volumes of market trades aggregated during interval {Delta}. Second degree market trades impact second degree of macro variables and expectations. Description of the second degree market trades, macro variables and expectations doubles the complexity of the current macroeconomic and financial theory.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا