Do you want to publish a course? Click here

PointGuard: Provably Robust 3D Point Cloud Classification

68   0   0.0 ( 0 )
 Added by Hongbin Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

3D point cloud classification has many safety-critical applications such as autonomous driving and robotic grasping. However, several studies showed that it is vulnerable to adversarial attacks. In particular, an attacker can make a classifier predict an incorrect label for a 3D point cloud via carefully modifying, adding, and/or deleting a small number of its points. Randomized smoothing is state-of-the-art technique to build certifiably robust 2D image classifiers. However, when applied to 3D point cloud classification, randomized smoothing can only certify robustness against adversarially modified points. In this work, we propose PointGuard, the first defense that has provable robustness guarantees against adversarially modified, added, and/or deleted points. Specifically, given a 3D point cloud and an arbitrary point cloud classifier, our PointGuard first creates multiple subsampled point clouds, each of which contains a random subset of the points in the original point cloud; then our PointGuard predicts the label of the original point cloud as the majority vote among the labels of the subsampled point clouds predicted by the point cloud classifier. Our first major theoretical contribution is that we show PointGuard provably predicts the same label for a 3D point cloud when the number of adversarially modified, added, and/or deleted points is bounded. Our second major theoretical contribution is that we prove the tightness of our derived bound when no assumptions on the point cloud classifier are made. Moreover, we design an efficient algorithm to compute our certified robustness guarantees. We also empirically evaluate PointGuard on ModelNet40 and ScanNet benchmark datasets.



rate research

Read More

The physical, black-box hard-label setting is arguably the most realistic threat model for cyber-physical vision systems. In this setting, the attacker only has query access to the model and only receives the top-1 class label without confidence information. Creating small physical stickers that are robust to environmental variation is difficult in the discrete and discontinuous hard-label space because the attack must both design a small shape to perturb within and find robust noise to fill it with. Unfortunately, we find that existing $ell_2$ or $ell_infty$ minimizing hard-label attacks do not easily extend to finding such robust physical perturbation attacks. Thus, we propose GRAPHITE, the first algorithm for hard-label physical attacks on computer vision models. We show that survivability, an estimate of physical variation robustness, can be used in new ways to generate small masks and is a sufficiently smooth function to optimize with gradient-free optimization. We use GRAPHITE to attack a traffic sign classifier and a publicly-available Automatic License Plate Recognition (ALPR) tool using only query access. We evaluate both tools in real-world field tests to measure its physical-world robustness. We successfully cause a Stop sign to be misclassified as a Speed Limit 30 km/hr sign in 95.7% of physical images and cause errors in 75% of physical images for the ALPR tool.
130 - Mingye Xu , Zhipeng Zhou , Yu Qiao 2019
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. To address this challenge, we propose Geometry Sharing Network (GS-Net) which effectively learns point descriptors with holistic context to enhance the robustness to geometric transformations. Compared with previous 3D point CNNs which perform convolution on nearby points, GS-Net can aggregate point features in a more global way. Specially, GS-Net consists of Geometry Similarity Connection (GSC) modules which exploit Eigen-Graph to group distant points with similar and relevant geometric information, and aggregate features from nearest neighbors in both Euclidean space and Eigenvalue space. This design allows GS-Net to efficiently capture both local and holistic geometric features such as symmetry, curvature, convexity and connectivity. Theoretically, we show the nearest neighbors of each point in Eigenvalue space are invariant to rotation and translation. We conduct extensive experiments on public datasets, ModelNet40, ShapeNet Part. Experiments demonstrate that GS-Net achieves the state-of-the-art performances on major datasets, 93.3% on ModelNet40, and are more robust to geometric transformations.
Deep learning convolutional neural networks have proved to be a powerful tool for MRI analysis. In current work, we explore the potential of the deformable convolutional deep neural network layers for MRI data classification. We propose new 3D deformable convolutions(d-convolutions), implement them in VoxResNet architecture and apply for structural MRI data classification. We show that 3D d-convolutions outperform standard ones and are effective for unprocessed 3D MR images being robust to particular geometrical properties of the data. Firstly proposed dVoxResNet architecture exhibits high potential for the use in MRI data classification.
We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud. Unlike other point upsampling methods which analyze shapes via local patches, in this work, we learn from global subsets. We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network. Specifically, we define source and target subsets according to the desired consolidation criteria (e.g., generating sharp points or points in sparse regions). The network learns a mapping from source to target subsets, and implicitly learns to consolidate the point cloud. During inference, the network is fed with random subsets of points from the input, which it displaces to synthesize a consolidated point set. We leverage the inductive bias of neural networks to eliminate noise and outliers, a notoriously difficult problem in point cloud consolidation. The shared weights of the network are optimized over the entire shape, learning non-local statistics and exploiting the recurrence of local-scale geometries. Specifically, the network encodes the distribution of the underlying shape surface within a fixed set of local kernels, which results in the best explanation of the underlying shape surface. We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.
In recent years, generative adversarial networks (GANs) and its variants have achieved unprecedented success in image synthesis. They are widely adopted in synthesizing facial images which brings potential security concerns to humans as the fakes spread and fuel the misinformation. However, robust detectors of these AI-synthesized fake faces are still in their infancy and are not ready to fully tackle this emerging challenge. In this work, we propose a novel approach, named FakeSpotter, based on monitoring neuron behaviors to spot AI-synthesized fake faces. The studies on neuron coverage and interactions have successfully shown that they can be served as testing criteria for deep learning systems, especially under the settings of being exposed to adversarial attacks. Here, we conjecture that monitoring neuron behavior can also serve as an asset in detecting fake faces since layer-by-layer neuron activation patterns may capture more subtle features that are important for the fake detector. Experimental results on detecting four types of fake faces synthesized with the state-of-the-art GANs and evading four perturbation attacks show the effectiveness and robustness of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا