No Arabic abstract
We report the identification of metastable isomeric states of $^{228}$Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the $beta$-decay of $^{228}$Ra, a component of the $^{232}$Th decay chain, with $beta$ Q-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to its low Q-value as well as the relative abundance of $^{232}$Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.
We discuss two complementary strategies to search for light dark matter (LDM) exploiting the positron beam possibly available in the future at Jefferson Laboratory. LDM is a new compelling hypothesis that identifies dark matter with new sub-GeV hidden sector states, neutral under standard model interactions and interacting with our world through a new force. Accelerator-based searches at the intensity frontier are uniquely suited to explore it. Thanks to the high intensity and the high energy of the CEBAF (Continuous Electron Beam Accelerator Facility) beam, and relying on a novel LDM production mechanism via positron annihilation on target atomic electrons, the proposed strategies will allow us to explore new regions in the LDM parameters space, thoroughly probing the LDM hypothesis as well as more general hidden sector scenarios.
Identification of beyond-standard-models including WIMP dark matter is studied in four particle final state with a W boson pair and a WIMP pair at the International Linear Collider. Models with different spin structures give distinguishable production angle distributions. After the mass determination in each model, the production angle is reconstructed using the four momentum of W bosons with a back-to-back constraint. Three models of Inert Higgs, Supersymmetry and Little Higgs are considered. Discrimination power at 200 fb and 40 fb signal cross section with 500 fb-1 luminosity at sqrt(s) = 500 GeV is obtained.
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example of energetic light dark matter, we scrutinize two representative search channels, electron scattering and proton scattering including deep inelastic scattering processes, in the context of elastic and inelastic boosted dark matter, in a completely detector-independent manner. In this work, a dark gauge boson is adopted as the particle to mediate the interactions between the Standard Model particles and boosted dark matter. We find that the signal sensitivity of the two channels highly depends on the (mass-)parameter region to probe, so search strategies and channels should be designed sensibly especially at the earlier stage of experiments. In particular, the contribution from the boosted-dark-matter-initiated deep inelastic scattering can be subleading (important) compared to the quasi-elastic proton scattering, if the mass of the mediator is below (above) $mathcal{O}$(GeV). We demonstrate how to practically perform searches and relevant analyses, employing example detectors such as DarkSide-20k, DUNE, Hyper-Kamiokande, and DeepCore, with their respective detector specifications taken into consideration. For other potential detectors we provide a summary table, collecting relevant information, from which similar studies can be fulfilled readily.
We report a study of CsI(Tl) scintillator to assess its applicability in experiments to search for dark matter particles. Measurements of the mean scintillation pulse shapes due to nuclear and electron recoils have been performed. We find that, as with NaI(Tl), pulse shape analysis can be used to discriminate between electron and nuclear recoils down to 4 keV. However, the discrimination factor is typically (10-15)% better than in NaI(Tl) above 4 keV. The quenching factor for caesium and iodine recoils was measured and found to increase from 11% to ~17% with decreasing recoil energy from 60 to 12 keV. Based on these results, the potential sensitivity of CsI(Tl) to dark matter particles in the form of neutralinos was calculated. We find an improvement over NaI(Tl) for the spin independent WIMP-nucleon interactions up to a factor of 5 assuming comparable electron background levels in the two scintillators.
Inelastic dark matter and strongly interacting dark matter are poorly constrained by direct detection experiments since they both require the scattering event to deliver energy from the nucleus into the dark matter in order to have observable effects. We propose to test these scenarios by searching for the collisional de-excitation of meta-stable nuclear isomers by the dark matter particles. The longevity of these isomers is related to a strong suppression of $gamma$- and $beta$-transitions, typically inhibited by a large difference in the angular momentum for the nuclear transition. The collisional de-excitation by dark matter is possible since heavy dark matter particles can have a momentum exchange with the nucleus comparable to the inverse nuclear size, hence lifting tremendous angular momentum suppression of the nuclear transition. This de-excitation can be observed either by searching for the direct effects of the decaying isomer, or through the re-scattering or decay of excited dark matter states in a nearby conventional dark matter detector setup. Existing nuclear isomer sources such as naturally occurring $^{180m}$Ta, $^{137m}$Ba produced in decaying Cesium in nuclear waste, $^{177m}$Lu from medical waste, and $^{178m}$Hf from the Department of Energy storage can be combined with current dark matter detector technology to search for this class of dark matter.