No Arabic abstract
Millimeter-wave (mmWave) and terahertz (THz) spectrum can support significantly higher data rates compared to lower frequency bands and hence are being actively considered for 5G wireless networks and beyond. These bands have high free-space path loss (FSPL) in line-of-sight (LOS) propagation due to their shorter wavelength. Moreover, in non-line-of-sight (NLOS) scenario, these two bands suffer higher penetration loss than lower frequency bands which could seriously affect the network coverage. It is therefore critical to study the NLOS penetration loss introduced by different building materials at mmWave and THz bands, to help establish link budgets for an accurate performance analysis in indoor environments. In this work, we measured the penetration loss and the attenuation of several common constructional materials at mmWave (28 and 39 GHz) and sub-THz (120 and 144 GHz) bands. Measurements were conducted using a channel sounder based on NI PXI platforms. Results show that the penetration loss changes extensively based on the frequency and the material properties, ranging from 0.401 dB for ceiling tile at 28 GHz, to 16.608 dB for plywood at 144 GHz. Ceiling tile has the lowest measured attenuation at 28 GHz, while clear glass has the highest attenuation of 27.633 dB/cm at 144 GHz. As expected, the penetration loss and attenuation increased with frequency for all the tested materials.
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is affected by both self-blockage and dynamic human blockers. We first build up a three-dimensional propagation channel in this system to characterize the impact of molecular absorption loss and the shrinking usable bandwidth nature of the ultra-wideband THz channel. We then carry out new performance analysis for two MC strategies: 1) Closest line-of-sight (LOS) access point (AP) MC (C-MC), and 2) Reactive MC (R- MC). With numerical results, we validate our analysis and show the considerable improvement achieved by both MC strategies in the connection probability. We further show that the C-MC and R-MC strategies provide significant and marginal capacity gain relative to the single connectivity strategy, respectively, and increasing the number of the users associated APs imposes completely different affects on the capacity gain achieved by the C-MC and R-MC strategies. Additionally, we clarify that our analysis allows us to determine the optimal density of APs in order to maximize the capacity gain.
TeraHertz (THz) communications are envisioned as a promising technology, owing to its unprecedented multi-GHz bandwidth. In this paper, wideband channel measurement campaigns at 140 GHz and 220 GHz are conducted in indoor scenarios including a meeting room and an office room. Directional antennas are utilized and rotated for resolving the multi-path components (MPCs) in the angular domain. Comparable path loss values are achieved in the 140 and 220 GHz bands. To investigate the large-scale fading characteristics for indoor THz communications, single-band close-in path loss models are developed. To further analyze the dependency on the frequency, two multi-band path loss models are analyzed, i.e., alpha-beta-gamma (ABG) and multi-frequency CI model with a frequency-weighted path loss exponent (CIF), between which the ABG model demonstrates a better fit with the measured data. Moreover, a coherent beam combination that constructively sums the signal amplitudes from various arrival directions can significantly reduce the path loss, in contrast with a non-coherent beam combination.
This paper presents the design, implementation and evaluation of milliMap, a single-chip millimetre wave (mmWave) radar based indoor mapping system targetted towards low-visibility environments to assist in emergency response. A unique feature of milliMap is that it only leverages a low-cost, off-the-shelf mmWave radar, but can reconstruct a dense grid map with accuracy comparable to lidar, as well as providing semantic annotations of objects on the map. milliMap makes two key technical contributions. First, it autonomously overcomes the sparsity and multi-path noise of mmWave signals by combining cross-modal supervision from a co-located lidar during training and the strong geometric priors of indoor spaces. Second, it takes the spectral response of mmWave reflections as features to robustly identify different types of objects e.g. doors, walls etc. Extensive experiments in different indoor environments show that milliMap can achieve a map reconstruction error less than 0.2m and classify key semantics with an accuracy around 90%, whilst operating through dense smoke.
Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond.
Indoor localization becomes a raising demand in our daily lives. Due to the massive deployment in the indoor environment nowadays, WiFi systems have been applied to high accurate localization recently. Although the traditional model based localization scheme can achieve sub-meter level accuracy by fusing multiple channel state information (CSI) observations, the corresponding computational overhead is significant. To address this issue, the model-free localization approach using deep learning framework has been proposed and the classification based technique is applied. In this paper, instead of using classification based mechanism, we propose to use a logistic regression based scheme under the deep learning framework, which is able to achieve sub-meter level accuracy (97.2cm medium distance error) in the standard laboratory environment and maintain reasonable online prediction overhead under the single WiFi AP settings. We hope the proposed logistic regression based scheme can shed some light on the model-free localization technique and pave the way for the practical deployment of deep learning based WiFi localization systems.