Do you want to publish a course? Click here

Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment

383   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study star formation histories (SFHs) of $simeq500$ dwarf galaxies (stellar mass $M_ast = 10^5 - 10^9,M_odot$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher-mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of satellite vs. central and LG vs. individual MWvs. isolated dwarf central. Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the near field have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for $M_ast = 10^6 - 10^7,M_odot$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.



rate research

Read More

We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellites current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between Mstar ~ 10^8-10^10 Msun have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times of low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall while higher mass satellites (e.g., Leo I, Fornax) typically quench ~1-4 Gyr after infall.
137 - Hong-Xin Zhang 2017
Local Group (LG) galaxies have relatively accurate SFHs and metallicity evolution derived from resolved CMD modeling, and thus offer a unique opportunity to explore the efficacy of estimating stellar mass M$_{star}$ of real galaxies based on integrated stellar luminosities. Building on the SFHs and metallicity evolution of 40 LG dwarf galaxies, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-NIR color-$M/L$ (color-log$Upsilon_{star}$($lambda$)) relations and M$_{star}$ estimation of local universe galaxies. We find that: The LG galaxies follow color-log$Upsilon_{star}$($lambda$) relations that fall in between the ones calibrated by previous studies; Optical color-log$Upsilon_{star}$($lambda$) relations at higher metallicities ([M/H]) are generally broader and steeper; The SFH concentration does not significantly affect the color-log$Upsilon_{star}$($lambda$) relations; Light-weighted ages and [M/H] together constrain log$Upsilon_{star}$($lambda$) with uncertainties ranging from $lesssim$ 0.1 dex for the NIR up to 0.2 dex for the optical passbands; Metallicity evolution induces significant uncertainties to the optical but not NIR $Upsilon_{star}$($lambda$) at given light-weighted ages and [M/H]; The $V$ band is the ideal luminance passband for estimating $Upsilon_{star}$($lambda$) from single colors, because the combinations of $Upsilon_{star}$($V$) and optical colors such as $B-V$ and $g-r$ exhibit the weakest systematic dependence on SFHs, [M/H] and dust extinction; Without any prior assumption on SFHs, M$_{star}$ is constrained with biases $lesssim$ 0.3 dex by the optical-to-NIR SED fitting. Optical passbands alone constrain M$_{star}$ with biases $lesssim$ 0.4 dex (or $lesssim$ 0.6 dex) when dust extinction is fixed (or variable) in SED fitting. [abridged]
Dwarf galaxies in the Local Group (LG) represent a distinct as well as diverse family of tracers of the earliest phases of galaxy assembly and the processing resulting from galactic harassment. Their stellar populations can be resolved and used as probes of the evolution of their host galaxy. In this regard, we present the first reconstruction of the star formation history (SFH) of them using the most evolved AGB stars that are long period variable (LPV). For the nearby, relatively massive and interacting gas-rich dwarf galaxies, the Magellanic Clouds, we found that the bulk of the stars formed ~ 10 Gyr ago for the LMC, while the strongest episode of star formation in the SMC occurred a few Gyr later. A peak in star formation around 0.7 Gyr ago in both Clouds is likely linked to their recent interaction. The Andromeda satellite pair NGC147/185 show different histories; the main epoch of star formation for NGC 185 occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate (SFR). In the case of NGC 147, the SFR peaked only 6.9 Gyr ago, staying intense until ~ 3 Gyr ago. Star formation in the isolated gas-rich dwarf galaxy IC 1613 has proceeded at a steady rate over the past 5 Gyr, without any particular dominant epoch. Due to lack of sufficient data, we have conducted an optical monitoring survey at the Isaac Newton Telescope (INT) of 55 dwarf galaxies in the LG to reconstruct the SFH of them uniformly. The observations are made over ten epochs, spaced approximately three months apart, as the luminosity of LPV stars varies on timescales of months to years. The system of galactic satellites of the large Andromeda spiral galaxy (M31) forms one of the key targets of our monitoring survey. We present the first results in the And I dwarf galaxy, where we discovered 116 LPVs among over 10,000 stars.
We study the environmental dependence of stellar population properties at z ~ 1.3. We derive galaxy properties (stellar masses, ages and star formation histories) for samples of massive, red, passive early-type galaxies in two high-redshift clusters, RXJ0849+4452 and RXJ0848+4453 (with redshifts of z = 1.26 and 1.27, respectively), and compare them with those measured for the RDCS1252.9-2927 cluster at z=1.24 and with those measured for a similarly mass-selected sample of field contemporaries drawn from the GOODS-South Field. Robust estimates of the aforementioned parameters have been obtained by comparing a large grid of composite stellar population models with extensive 8-10 band photometric coverage, from the rest-frame far-ultraviolet to the infrared. We find no variations of the overall stellar population properties among the different samples of cluster early-type galaxies. However, when comparing cluster versus field stellar population properties we find that, even if the (star formation weighted) ages are similar and depend only on galaxy mass, the ones in the field do employ longer timescales to assemble their final mass. We find that, approximately 1 Gyr after the onset of star formation, the majority (75%) of cluster galaxies have already assembled most (> 80%) of their final mass, while, by the same time, fewer (35%) field ETGs have. Thus we conclude that while galaxy mass regulates the timing of galaxy formation, the environment regulates the timescale of their star formation histories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا