Do you want to publish a course? Click here

OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association

105   0   0.0 ( 0 )
 Added by Sven Kreiss
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many image-based perception tasks can be formulated as detecting, associating and tracking semantic keypoints, e.g., human body pose estimation and tracking. In this work, we present a general framework that jointly detects and forms spatio-temporal keypoint associations in a single stage, making this the first real-time pose detection and tracking algorithm. We present a generic neural network architecture that uses Composite Fields to detect and construct a spatio-temporal pose which is a single, connected graph whose nodes are the semantic keypoints (e.g., a persons body joints) in multiple frames. For the temporal associations, we introduce the Temporal Composite Association Field (TCAF) which requires an extended network architecture and training method beyond previous Composite Fields. Our experiments show competitive accuracy while being an order of magnitude faster on multiple publicly available datasets such as COCO, CrowdPose and the PoseTrack 2017 and 2018 datasets. We also show that our method generalizes to any class of semantic keypoints such as car and animal parts to provide a holistic perception framework that is well suited for urban mobility such as self-driving cars and delivery robots.



rate research

Read More

In this work we introduce a time- and memory-efficient method for structured prediction that couples neuron decisions across both space at time. We show that we are able to perform exact and efficient inference on a densely connected spatio-temporal graph by capitalizing on recent advances on deep Gaussian Conditional Random Fields (GCRFs). Our method, called VideoGCRF is (a) efficient, (b) has a unique global minimum, and (c) can be trained end-to-end alongside contemporary deep networks for video understanding. We experiment with multiple connectivity patterns in the temporal domain, and present empirical improvements over strong baselines on the tasks of both semantic and instance segmentation of videos.
Detecting pedestrians and predicting future trajectories for them are critical tasks for numerous applications, such as autonomous driving. Previous methods either treat the detection and prediction as separate tasks or simply add a trajectory regression head on top of a detector. In this work, we present a novel end-to-end two-stage network: Spatio-Temporal-Interactive Network (STINet). In addition to 3D geometry modeling of pedestrians, we model the temporal information for each of the pedestrians. To do so, our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames and the comprehensive spatio-temporal information can be captured in the second stage. Also, we model the interaction among objects with an interaction graph, to gather the information among the neighboring objects. Comprehensive experiments on the Lyft Dataset and the recently released large-scale Waymo Open Dataset for both object detection and future trajectory prediction validate the effectiveness of the proposed method. For the Waymo Open Dataset, we achieve a bird-eyes-view (BEV) detection AP of 80.73 and trajectory prediction average displacement error (ADE) of 33.67cm for pedestrians, which establish the state-of-the-art for both tasks.
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spatial and temporal relations, and the lack of precise localization information for AU feature learning. To tackle these limitations, we propose a novel spatio-temporal relation and attention learning framework for AU detection. Specifically, we introduce a spatio-temporal graph convolutional network to capture both spatial and temporal relations from dynamic AUs, in which the AU relations are formulated as a spatio-temporal graph with adaptively learned instead of predefined edge weights. Moreover, the learning of spatio-temporal relations among AUs requires individual AU features. Considering the dynamism and shape irregularity of AUs, we propose an attention regularization method to adaptively learn regional attentions that capture highly relevant regions and suppress irrelevant regions so as to extract a complete feature for each AU. Extensive experiments show that our approach achieves substantial improvements over the state-of-the-art AU detection methods on BP4D and especially DISFA benchmarks.
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video pre-processing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition by ca. 5% and 15% respectively.
With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this paper, we systematically introduce a new large-scale benchmark, named as STVText4, a well-designed spatial-temporal detection metric (STDM), and a novel clustering-based baseline method, referred to as Temporal Clustering (TC). STVText4 opens a challenging yet promising direction of VSTD, termed as ST-VSTD, which targets at simultaneously detecting video scene texts in both spatial and temporal domains. STVText4 contains more than 1.4 million text instances from 161,347 video frames of 106 videos, where each instance is annotated with not only spatial bounding box and temporal range but also four intrinsic attributes, including legibility, density, scale, and lifecycle, to facilitate the community. With continuous propagation of identical texts in the video sequence, TC can accurately output the spatial quadrilateral and temporal range of the texts, which sets a strong baseline for ST-VSTD. Experiments demonstrate the efficacy of our method and the great academic and practical value of the STVText4. The dataset and code will be available soon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا