No Arabic abstract
Biological evolution has endowed the plant Arabidopsis thaliana with genetically regulated circadian rhythms. A number of authors have published kinetic models for these oscillating chemical reactions based on a network of interacting genes. To investigate the hypothesis that the Arabidopsis circadian dynamical system is poised near a Hopf bifurcation like some other biological oscillators, we varied the kinetic parameters in the models and searched for bifurcations. Finding that each model does exhibit a supercritical Hopf bifurcation, we performed a weakly nonlinear analysis near the bifurcation points to derive the Stuart-Landau amplitude equation. To illustrate a common dynamical structure, we scaled the numerical solutions to the models with the asymptotic solutions to the Stuart-Landau equation to collapse the circadian oscillations onto two universal curves -- one for amplitude, and one for frequency. However, some models are close to bifurcation while others are far, some models are post-bifurcation while others are pre-bifurcation, and kinetic parameters that lead to a bifurcation in some models do not lead to a bifurcation in others. Future kinetic modeling can make use of our analysis to ensure models are consistent with each other and with the dynamics of the Arabidopsis circadian rhythm.
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.
The light-based minimum-time circadian entrainment problem for mammals, Neurospora, and Drosophila is studied based on the mathematical models of their circadian gene regulation. These models contain high order nonlinear differential equations. Two model simplification methods are applied to these high-order models: the phase response curves (PRC) and the Principal Orthogonal Decomposition (POD). The variational calculus and a gradient descent algorithm are applied for solving the optimal light input in the high-order models. As the results of the gradient descent algorithm rely heavily on the initial guesses, we use the optimal control of the PRC and the simplified model to initialize the gradient descent algorithm. In this paper, we present: (1) the application of PRC and direct shooting algorithm on high-order nonlinear models; (2) a general process for solving the minimum-time optimal control problem on high-order models; (3) the impacts of minimum-time optimal light on circadian gene transcription and protein synthesis.
We show using scaling arguments and Monte Carlo simulations that a class of binary interacting models of opinion evolution belong to the Ising universality class in presence of an annealed noise term of finite amplitude. While the zero noise limit is known to show an active-absorbing transition, addition of annealed noise induces a continuous order-disorder transition with Ising universality class in the infinite-range (mean field) limit of the models.
Circadian rhythm is the natural biological cycle manifested in human daily routines. A regular and stable rhythm is found to be correlated with good physical and mental health. With the wide adoption of mobile and wearable technology, many types of sensor data, such as GPS and actigraphy, provide evidence for researchers to objectively quantify the circadian rhythm of a user and further use these quantified metrics of circadian rhythm to infer the users health status. Researchers in computer science and psychology have investigated circadian rhythm using various mobile and wearable sensors in ecologically valid human sensing studies, but questions remain whether and how different data types produce different circadian rhythm results when simultaneously used to monitor a user. We hypothesize that different sensor data reveal different aspects of the users daily behavior, thus producing different circadian rhythm patterns. In this paper we focus on two data types: GPS and accelerometer data from smartphones. We used smartphone data from 225 college student participants and applied four circadian rhythm characterization methods. We found significant and interesting discrepancies in the rhythmic patterns discovered among sensors, which suggests circadian rhythms discovered from different personal tracking sensors have different levels of sensitivity to device usage and aspects of daily behavior.
The comprehension of tumor growth is a intriguing subject for scientists. New researches has been constantly required to better understand the complexity of this phenomenon. In this paper, we pursue a physical description that account for some experimental facts involving avascular tumor growth. We have proposed an explanation of some phenomenological (macroscopic) aspects of tumor, as the spatial form and the way it growths, from a individual-level (microscopic) formulation. The model proposed here is based on a simple principle: competitive interaction between the cells dependent on their mutual distances. As a result, we reproduce many empirical evidences observed in real tumors, as exponential growth in their early stages followed by a power law growth. The model also reproduces the fractal space distribution of tumor cells and the universal behavior presented in animals and tumor growth, conform reported by West, Guiot {it et. al.}cite{West2001,Guiot2003}. The results suggest that the universal similarity between tumor and animal growth comes from the fact that both are described by the same growth equation - the Bertalanffy-Richards model - even they does not necessarily share the same biophysical properties.