Do you want to publish a course? Click here

The Ising universality class of kinetic exchange models of opinion dynamics

198   0   0.0 ( 0 )
 Added by Soumyajyoti Biswas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show using scaling arguments and Monte Carlo simulations that a class of binary interacting models of opinion evolution belong to the Ising universality class in presence of an annealed noise term of finite amplitude. While the zero noise limit is known to show an active-absorbing transition, addition of annealed noise induces a continuous order-disorder transition with Ising universality class in the infinite-range (mean field) limit of the models.



rate research

Read More

In this work we study a model of opinion dynamics considering activation/deactivation of agents. In other words, individuals are not static and can become inactive and drop out from the discussion. A probability $w$ governs the deactivation dynamics, whereas social interactions are ruled by kinetic exchanges, considering competitive positive/negative interactions. Inactive agents can become active due to interactions with active agents. Our analytical and numerical results show the existence of two distinct nonequilibrium phase transitions, with the occurrence of three phases, namely ordered (ferromagnetic-like), disordered (paramagnetic-like) and absorbing phases. The absorbing phase represents a collective state where all agents are inactive, i.e., they do not participate on the dynamics, inducing a frozen state. We determine the critical value $w_c$ above which the system is in the absorbing phase independently of the other parameters. We also verify a distinct critical behavior for the transitions among different phases.
We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition.
We propose a minimal multi-agent model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition to polarized opinion state starting from non-polarized opinion state. In order to analyze the model, we introduce an iterative map version of the model, which has very similar statistical characteristics. An approximate theoretical analysis of the numerical results are also given, based on the iterative map version.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded confidence. Our results show the interesting emergence of nonequilibrium hysteresis and heterogeneity-assisted ordering. Such counterintuitive phenomena are robust to different types of network architectures such as random, small-world and scale-free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا