Do you want to publish a course? Click here

Data Augmentation for Abstractive Query-Focused Multi-Document Summarization

126   0   0.0 ( 0 )
 Added by Ramakanth Pasunuru
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The progress in Query-focused Multi-Document Summarization (QMDS) has been limited by the lack of sufficient largescale high-quality training datasets. We present two QMDS training datasets, which we construct using two data augmentation methods: (1) transferring the commonly used single-document CNN/Daily Mail summarization dataset to create the QMDSCNN dataset, and (2) mining search-query logs to create the QMDSIR dataset. These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries. To cover both these real summary and query aspects, we build abstractive end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets. We also introduce new hierarchical encoders that enable a more efficient encoding of the query together with multiple documents. Empirical results demonstrate that our data augmentation and encoding methods outperform baseline models on automatic metrics, as well as on human evaluations along multiple attributes.



rate research

Read More

Query focused summarization (QFS) models aim to generate summaries from source documents that can answer the given query. Most previous work on QFS only considers the query relevance criterion when producing the summary. However, studying the effect of answer relevance in the summary generating process is also important. In this paper, we propose QFS-BART, a model that incorporates the explicit answer relevance of the source documents given the query via a question answering model, to generate coherent and answer-related summaries. Furthermore, our model can take advantage of large pre-trained models which improve the summarization performance significantly. Empirical results on the Debatepedia dataset show that the proposed model achieves the new state-of-the-art performance.
Abstractive summarization typically relies on large collections of paired articles and summaries. However, in many cases, parallel data is scarce and costly to obtain. We develop an abstractive summarization system that relies only on large collections of example summaries and non-matching articles. Our approach consists of an unsupervised sentence extractor that selects salient sentences to include in the final summary, as well as a sentence abstractor that is trained on pseudo-parallel and synthetic data, that paraphrases each of the extracted sentences. We perform an extensive evaluation of our method: on the CNN/DailyMail benchmark, on which we compare our approach to fully supervised baselines, as well as on the novel task of automatically generating a press release from a scientific journal article, which is well suited for our system. We show promising performance on both tasks, without relying on any article-summary pairs.
130 - Dan Su , Yan Xu , Tiezheng Yu 2020
We present CAiRE-COVID, a real-time question answering (QA) and multi-document summarization system, which won one of the 10 tasks in the Kaggle COVID-19 Open Research Dataset Challenge, judged by medical experts. Our system aims to tackle the recent challenge of mining the numerous scientific articles being published on COVID-19 by answering high priority questions from the community and summarizing salient question-related information. It combines information extraction with state-of-the-art QA and query-focused multi-document summarization techniques, selecting and highlighting evidence snippets from existing literature given a query. We also propose query-focused abstractive and extractive multi-document summarization methods, to provide more relevant information related to the question. We further conduct quantitative experiments that show consistent improvements on various metrics for each module. We have launched our website CAiRE-COVID for broader use by the medical community, and have open-sourced the code for our system, to bootstrap further study by other researches.
Manifold ranking has been successfully applied in query-oriented multi-document summarization. It not only makes use of the relationships among the sentences, but also the relationships between the given query and the sentences. However, the information of original query is often insufficient. So we present a query expansion method, which is combined in the manifold ranking to resolve this problem. Our method not only utilizes the information of the query term itself and the knowledge base WordNet to expand it by synonyms, but also uses the information of the document set itself to expand the query in various ways (mean expansion, variance expansion and TextRank expansion). Compared with the previous query expansion methods, our method combines multiple query expansion methods to better represent query information, and at the same time, it makes a useful attempt on manifold ranking. In addition, we use the degree of word overlap and the proximity between words to calculate the similarity between sentences. We performed experiments on the datasets of DUC 2006 and DUC2007, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.
100 - Qiwei Bi , Haoyuan Li , Kun Lu 2021
Previous abstractive methods apply sequence-to-sequence structures to generate summary without a module to assist the system to detect vital mentions and relationships within a document. To address this problem, we utilize semantic graph to boost the generation performance. Firstly, we extract important entities from each document and then establish a graph inspired by the idea of distant supervision citep{mintz-etal-2009-distant}. Then, we combine a Bi-LSTM with a graph encoder to obtain the representation of each graph node. A novel neural decoder is presented to leverage the information of such entity graphs. Automatic and human evaluations show the effectiveness of our technique.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا