Do you want to publish a course? Click here

VEM and the Mesh

74   0   0.0 ( 0 )
 Added by Gianmarco Manzini
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work we report some results, obtained within the framework of the ERC Project CHANGE, on the impact on the performance of the virtual element method of the shape of the polygonal elements of the underlying mesh. More in detail, after reviewing the state of the art, we present a) an experimental analysis of the convergence of the VEM under condition violating the standard shape regularity assumptions, b) an analysis of the correlation between some mesh quality metrics and a set of different performance indexes, and c) a suitably designed mesh quality indicator, aimed at predicting the quality of the performance of the VEM on a given mesh.



rate research

Read More

We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $Omega$ with curved boundaries. Given a polygonal approximation $Omega_h$ of the domain $Omega$, the standard order $m$ VEM [6], for $m$ increasing, leads to a suboptimal convergence rate. We adapt the approach of [16] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $Omega_h$, which, to retain computability, is evaluated after applying the projector $Pi^ abla$ onto the space of polynomials. Numerical experiments confirm the theory.
This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively reduce the dimensionality of integration using the generalized Stokes theorem to line integrals over trimming curves, and (2) we employ numerical antidifferentiation in the generalized Stokes theorem using high-order quadrature rules. The scheme achieves exponential convergence up to trimming curve approximation error and has applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order curvilinear meshes, and initialization of multi-material simulations. We compare the quadrature scheme to commonly-used quadrature schemes in the literature and show that our scheme is much more efficient in terms of number of quadrature points used. We provide an open-source implementation of the scheme in MATLAB as part of QuaHOG, a software package for Quadrature of High-Order Geometries.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
This paper develops entropy stable (ES) adaptive moving mesh schemes for the 2D and 3D special relativistic hydrodynamic (RHD) equations. They are built on the ES finite volume approximation of the RHD equations in curvilinear coordinates, the discrete geometric conservation laws, and the mesh adaptation implemented by iteratively solving the Euler-Lagrange equations of the mesh adaption functional in the computational domain with suitably chosen monitor functions. First, a sufficient condition is proved for the two-point entropy conservative (EC) flux, by mimicking the derivation of the continuous entropy identity in curvilinear coordinates and using the discrete geometric conservation laws given by the conservative metrics method. Based on such sufficient condition, the EC fluxes for the RHD equations in curvilinear coordinates are derived and the second-order accurate semi-discrete EC schemes are developed to satisfy the entropy identity for the given convex entropy pair. Next, the semi-discrete ES schemes satisfying the entropy inequality are proposed by adding a suitable dissipation term to the EC scheme and utilizing linear reconstruction with the minmod limiter in the scaled entropy variables in order to suppress the numerical oscillations of the above EC scheme. Then, the semi-discrete ES schemes are integrated in time by using the second-order strong stability preserving explicit Runge-Kutta schemes. Finally, several numerical results show that our 2D and 3D ES adaptive moving mesh schemes effectively capture the localized structures, such as sharp transitions or discontinuities, and are more efficient than their counterparts on uniform mesh.
A Lagrangian-type numerical scheme called the comoving mesh method or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvature flow problem. This finite element scheme exploits the idea that the normal velocity field of the moving boundary can be extended throughout the entire domain of definition of the problem using, for instance, the Laplace operator. Then, the boundary as well as the finite element mesh of the domain are easily updated at every time step by moving the nodal points along this velocity field. The feasibility of the method, highlighting its practicality, is illustrated through various numerical experiments. Also, in order to examine the accuracy of the proposed scheme, the experimental order of convergences between the numerical and manufactured solutions for these examples are also calculated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا