Do you want to publish a course? Click here

High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes

382   0   0.0 ( 0 )
 Added by David Gunderman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively reduce the dimensionality of integration using the generalized Stokes theorem to line integrals over trimming curves, and (2) we employ numerical antidifferentiation in the generalized Stokes theorem using high-order quadrature rules. The scheme achieves exponential convergence up to trimming curve approximation error and has applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order curvilinear meshes, and initialization of multi-material simulations. We compare the quadrature scheme to commonly-used quadrature schemes in the literature and show that our scheme is much more efficient in terms of number of quadrature points used. We provide an open-source implementation of the scheme in MATLAB as part of QuaHOG, a software package for Quadrature of High-Order Geometries.



rate research

Read More

119 - Jan Glaubitz 2020
Numerical integration is encountered in all fields of numerical analysis and the engineering sciences. By now, various efficient and accurate quadrature rules are known; for instance, Gauss-type quadrature rules. In many applications, however, it might be impractical---if not even impossible---to obtain data to fit known quadrature rules. Often, experimental measurements are performed at equidistant or even scattered points in space or time. In this work, we propose stable high order quadrature rules for experimental data, which can accurately handle general weight functions.
In this work we report some results, obtained within the framework of the ERC Project CHANGE, on the impact on the performance of the virtual element method of the shape of the polygonal elements of the underlying mesh. More in detail, after reviewing the state of the art, we present a) an experimental analysis of the convergence of the VEM under condition violating the standard shape regularity assumptions, b) an analysis of the correlation between some mesh quality metrics and a set of different performance indexes, and c) a suitably designed mesh quality indicator, aimed at predicting the quality of the performance of the VEM on a given mesh.
In this work we investigate the parallel scalability of the numerical method developed in Guthrey and Rossmanith [The regionally implicit discontinuous Galerkin method: Improving the stability of DG-FEM, SIAM J. Numer. Anal. (2019)]. We develop an implementation of the regionally-implicit discontinuous Galerkin (RIDG) method in DoGPack, which is an open source C++ software package for discontinuous Galerkin methods. Specifically, we develop and test a hybrid OpenMP and MPI parallelized implementation of DoGPack with the goal of exploring the efficiency and scalability of RIDG in comparison to the popular strong stability-preserving Runge-Kutta discontinuous Galerkin (SSP-RKDG) method. We demonstrate that RIDG methods are able to hide communication latency associated with distributed memory parallelism, due to the fact that almost all of the work involved in the method is highly localized to each element, producing a localized prediction for each region. We demonstrate the enhanced efficiency and scalability of the of the RIDG method and compare it to SSP-RKDG methods and show extensibility to very high order schemes. The two-dimensional scaling study is performed on machines at the Institute for Cyber-Enabled Research at Michigan State University, using up to 1440 total cores on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPUs. The three dimensional scaling study is performed on Livermore Computing clusters at at Lawrence Livermore National Laboratory, using up to 28672 total cores on Intel Xeon CLX-8276L CPUs with Omni-Path interconnects.
151 - Yue Wu 2020
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are established while an error bound for classical trapezoidal quadrature is obtained for comparison. The randomised trapezoidal quadrature rule is shown to improve the order of convergence by half.
189 - Ammar Hakim , James Juno 2020
Understanding fundamental kinetic processes is important for many problems, from plasma physics to gas dynamics. A first-principles approach to these problems requires a statistical description via the Boltzmann equation, coupled to appropriate field equations. In this paper we present a novel version of the discontinuous Galerkin (DG) algorithm to solve such kinetic equations. Unlike Monte-Carlo methods we use a continuum scheme in which we directly discretize the 6D phase-space using discontinuous basis functions. Our DG scheme eliminates counting noise and aliasing errors that would otherwise contaminate the delicate field-particle interactions. We use modal basis functions with reduced degrees of freedom to improve efficiency while retaining a high formal order of convergence. Our implementation incorporates a number of software innovations: use of JIT compiled top-level language, automatically generated computational kernels and a sophisticated shared-memory MPI implementation to handle velocity space parallelization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا