No Arabic abstract
The Gamow shell model has shown to efficiently describe weakly bound and unbound nuclear systems, as internucleon correlations and continuum coupling are both taken into account in this model. In the present work, we study neutron-dripline oxygen isotopes. It is hereby demonstrated that the presence of continuum coupling is important for the description of oxygen isotopes at dripline, and especially to assess the eventual bound or unbound character of $^{28}$O. Our results suggest that the ground state of $^{28}$O is weakly unbound and is similar to the narrow resonant $^{26}$O ground state. Predictions of weakly bound and resonance excited states in $^{24text-26}$O are also provided. The asymptotes of the studied many-body states are analyzed via one-body densities, whereby the different radial properties of well bound, loosely bound, resonance states are clearly depicted.
Based on the realistic nuclear force of the high-precision CD-Bonn potential, we have performed comprehensive calculations for neutron-rich calcium isotopes using the Gamow shell model (GSM) which includes resonance and continuum. The realistic GSM calculations produce well binding energies, one- and two-neutron separation energies, predicting that $^{57}$Ca is the heaviest bound odd isotope and $^{70}$Ca is the dripline nucleus. Resonant states are predicted, which provides useful information for future experiments on particle emissions in neutron-rich calcium isotopes. Shell evolutions in the calcium chain around neutron numbers textit{N} = 32, 34 and 40 are understood by calculating effective single-particle energies, the excitation energies of the first $2^+$ states and two-neutron separation energies. The calculations support shell closures at $^{52}$Ca (textit{N} = 32) and $^{54}$Ca (textit{N} = 34) but show a weakening of shell closure at $^{60}$Ca (textit{N} = 40). The possible shell closure at $^{70}$Ca (textit{N} = 50) is predicted.
We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain rather well-converged results in model spaces consisting of up to 21 oscillator shells. For interactions with a momentum cutoff of 500 MeV, we find that 28O is stable with respect to 24O, while calculations with a momentum cutoff of 600 MeV result in a slightly unbound 28O. The theoretical error estimates due to the omission of the three-nucleon forces and the truncation of excitations beyond three-particle-three-hole clusters indicate that the stability of 28O cannot be ruled out from ab-initio calculations, and that three-nucleon forces and continuum effects play the dominant role in deciding this question.
We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular our calculations are consistent with the N=14, 16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the corresponding N=14 closure is weaker. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.
Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we construct the minimal complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 $leq$ A $leq$ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid $^4$He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei $^{10}$Li-$^{10}$N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.