No Arabic abstract
In recent work, Gourv`es, Lesca, and Wilczynski propose a variant of the classic housing markets model where the matching between agents and objects evolves through Pareto-improving swaps between pairs of adjacent agents in a social network. To explore the swap dynamics of their model, they pose several basic questions concerning the set of reachable matchings. In their work and other follow-up works, these questions have been studied for various classes of graphs: stars, paths, generalized stars (i.e., trees where at most one vertex has degree greater than two), trees, and cliques. For generalized stars and trees, it remains open whether a Pareto-efficient reachable matching can be found in polynomial time. In this paper, we pursue the same set of questions under a natural variant of their model. In our model, the social network is replaced by a network of objects, and a swap is allowed to take place between two agents if it is Pareto-improving and the associated objects are adjacent in the network. In those cases where the question of polynomial-time solvability versus NP-hardness has been resolved for the social network model, we are able to show that the same result holds for the network-of-objects model. In addition, for our model, we present a polynomial-time algorithm for computing a Pareto-efficient reachable matching in generalized star networks. Moreover, the object reachability algorithm that we present for path networks is significantly faster than the known polynomial-time algorithms for the same question in the social network model.
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et al. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.
The Possible-Winner problem asks, given an election where the voters preferences over the set of candidates is partially specified, whether a distinguished candidate can become a winner. In this work, we consider the computational complexity of Possible-Winner under the assumption that the voter preferences are $partitioned$. That is, we assume that every voter provides a complete order over sets of incomparable candidates (e.g., candidates are ranked by their level of education). We consider elections with partitioned profiles over positional scoring rules, with an unbounded number of candidates, and unweighted voters. Our first result is a polynomial time algorithm for voting rules with $2$ distinct values, which include the well-known $k$-approval voting rule. We then go on to prove NP-hardness for a class of rules that contain all voting rules that produce scoring vectors with at least $4$ distinct values.
It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare the candidates having the best chance of winning to be the (co-)winners. We refer to this as the Most Probable Winner (MPW). In this paper, we propose an alternative winner interpretation for positional scoring rules - the Most Expected Winner (MEW), based on the expected performance of the candidates. This winner interpretation enjoys some desirable properties that the MPW does not. We establish the theoretical hardness of MEW over incomplete voter preferences, then identify a collection of tractable cases for a variety of voting profiles. An important contribution of this work is to separate the voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles.
The cost-sharing connection game is a variant of routing games on a network. In this model, given a directed graph with edge-costs and edge-capacities, each agent wants to construct a path from a source to a sink with low cost. The cost of each edge is shared by the users based on a cost-sharing function. One of simple cost-sharing functions is defined as the cost divided by the number of users. In fact, most of the previous papers about cost-sharing connection games addressed this cost-sharing function. It models an ideal setting, where no overhead arises when people share things, though it might be quite rare in real life; it is more realistic to consider the setting that the cost paid by an agent is the original cost per the number of the agents plus the overhead. In this paper, we model the more realistic scenario of cost-sharing connection games by generalizing cost-sharing functions. The arguments on the model do not depend on specific cost-sharing functions, and are applicable for a wide class of cost-sharing functions satisfying the following natural properties: they are (1) non-increasing, (2) lower bounded by the original cost per the number of the agents, and (3) upper bounded by the original cost, which enables to represent various scenarios of cost-sharing. We investigate the Price of Anarchy (PoA) and the Price of Stability (PoS) under sum-cost and max-cost criteria with the generalized cost-sharing function. In spite of the generalization, we obtain the same bounds of PoA and PoS as the cost-sharing with no overhead except PoS under sum-cost. Note that these bounds are tight. In the case of sum-cost, the lower bound on PoS increases from $log n$ to $n+1/n-1$ by the generalization, which is also almost tight because the upper bound is $n$.
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the preferred attributes of a given candidate. Though attribute based preference is addressed in several contexts, committee selection problem with attribute approval of voters has not been attempted earlier. A committee formed on attribute preferences is more likely to be a better representative of the qualities desired by the voters and is less likely to be susceptible to collusion or manipulation. In this work, we provide a formal study of the different aspects of this problem and define properties of weak unanimity, strong unanimity, simple justified representations and compound justified representation, that are required to be satisfied by the selected committee. We show that none of the existing vote/approval aggregation rules satisfy these new properties for attribute aggregation. We describe a greedy approach for attribute aggregation that satisfies the first three properties, but not the fourth, i.e., compound justified representation, which we prove to be NP-complete. Furthermore, we prove that finding a committee with justified representation and the highest approval voting score is NP-complete.