Do you want to publish a course? Click here

Posterior consistency for the spectral density of non-Gaussian stationary time series

68   0   0.0 ( 0 )
 Added by Yifu Tang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation has been proposed in Kirch et al. who prove posterior consistency for spectral density estimation in combination with the Bernstein-Dirichlet process prior for Gaussian time series. In this paper, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem of Shalizi for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood as proposed by Choudhuri, Ghosal and Roy is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.



rate research

Read More

In this paper, we prove almost surely consistency of a Survival Analysis model, which puts a Gaussian process, mapped to the unit interval, as a prior on the so-called hazard function. We assume our data is given by survival lifetimes $T$ belonging to $mathbb{R}^{+}$, and covariates on $[0,1]^d$, where $d$ is an arbitrary dimension. We define an appropriate metric for survival functions and prove posterior consistency with respect to this metric. Our proof is based on an extension of the theorem of Schwartz (1965), which gives general conditions for proving almost surely consistency in the setting of non i.i.d random variables. Due to the nature of our data, several results for Gaussian processes on $mathbb{R}^+$ are proved which may be of independent interest.
80 - Holger Dette , Weichi Wu 2021
The problem of constructing a simultaneous confidence band for the mean function of a locally stationary functional time series $ { X_{i,n} (t) }_{i = 1, ldots, n}$ is challenging as these bands can not be built on classical limit theory. On the one hand, for a fixed argument $t$ of the functions $ X_{i,n}$, the maximum absolute deviation between an estimate and the time dependent regression function exhibits (after appropriate standardization) an extreme value behaviour with a Gumbel distribution in the limit. On the other hand, for stationary functional data, simultaneous confidence bands can be built on classical central theorems for Banach space valued random variables and the limit distribution of the maximum absolute deviation is given by the sup-norm of a Gaussian process. As both limit theorems have different rates of convergence, they are not compatible, and a weak convergence result, which could be used for the construction of a confidence surface in the locally stationary case, does not exist. In this paper we propose new bootstrap methodology to construct a simultaneous confidence band for the mean function of a locally stationary functional time series, which is motivated by a Gaussian approximation for the maximum absolute deviation. We prove the validity of our approach by asymptotic theory, demonstrate good finite sample properties by means of a simulation study and illustrate its applicability analyzing a data example.
We consider the sparse principal component analysis for high-dimensional stationary processes. The standard principal component analysis performs poorly when the dimension of the process is large. We establish the oracle inequalities for penalized principal component estimators for the processes including heavy-tailed time series. The rate of convergence of the estimators is established. We also elucidate the theoretical rate for choosing the tuning parameter in penalized estimators. The performance of the sparse principal component analysis is demonstrated by numerical simulations. The utility of the sparse principal component analysis for time series data is exemplified by the application to average temperature data.
Blind source separation (BSS) is a signal processing tool, which is widely used in various fields. Examples include biomedical signal separation, brain imaging and economic time series applications. In BSS, one assumes that the observed $p$ time series are linear combinations of $p$ latent uncorrelated weakly stationary time series. The aim is then to find an estimate for an unmixing matrix, which transforms the observed time series back to uncorrelated latent time series. In SOBI (Second Order Blind Identification) joint diagonalization of the covariance matrix and autocovariance matrices with several lags is used to estimate the unmixing matrix. The rows of an unmixing matrix can be derived either one by one (deflation-based approach) or simultaneously (symmetric approach). The latter of these approaches is well-known especially in signal processing literature, however, the rigorous analysis of its statistical properties has been missing so far. In this paper, we fill this gap and investigate the statistical properties of the symmetric SOBI estimate in detail and find its limiting distribution under general conditions. The asymptotical efficiencies of symmetric SOBI estimate are compared to those of recently introduced deflation-based SOBI estimate under general multivariate MA$(infty)$ processes. The theory is illustrated by some finite-sample simulation studies as well as a real EEG data example.
This article is concerned with the spectral behavior of $p$-dimensional linear processes in the moderately high-dimensional case when both dimensionality $p$ and sample size $n$ tend to infinity so that $p/nto0$. It is shown that, under an appropriate set of assumptions, the empirical spectral distributions of the renormalized and symmetrized sample autocovariance matrices converge almost surely to a nonrandom limit distribution supported on the real line. The key assumption is that the linear process is driven by a sequence of $p$-dimensional real or complex random vectors with i.i.d. entries possessing zero mean, unit variance and finite fourth moments, and that the $ptimes p$ linear process coefficient matrices are Hermitian and simultaneously diagonalizable. Several relaxations of these assumptions are discussed. The results put forth in this paper can help facilitate inference on model parameters, model diagnostics and prediction of future values of the linear process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا