No Arabic abstract
Deep learning has seen a movement away from representing examples with a monolithic hidden state towards a richly structured state. For example, Transformers segment by position, and object-centric architectures decompose images into entities. In all these architectures, interactions between different elements are modeled via pairwise interactions: Transformers make use of self-attention to incorporate information from other positions; object-centric architectures make use of graph neural networks to model interactions among entities. However, pairwise interactions may not achieve global coordination or a coherent, integrated representation that can be used for downstream tasks. In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information through a common, bandwidth-limited communication channel. We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments. The proposed method includes a shared workspace through which communication among different specialist modules takes place but due to limits on the communication bandwidth, specialist modules must compete for access. We show that capacity limitations have a rational basis in that (1) they encourage specialization and compositionality and (2) they facilitate the synchronization of otherwise independent specialists.
We study a distributed sampling problem where a set of processors want to output (approximately) independent and identically distributed samples from a joint distribution with the help of a common message from a coordinator. Each processor has access to a subset of sources from a set of independent sources of shared randomness. We consider two cases -- in the omniscient coordinator setting, the coordinator has access to all these sources of shared randomness, while in the oblivious coordinator setting, it has access to none. All processors and the coordinator may privately randomize. In the omniscient coordinator setting, when the subsets at the processors are disjoint (individually shared randomness model), we characterize the rate of communication required from the coordinator to the processors over a multicast link. For the two-processor case, the optimal rate matches a special case of relaxed Wyners common information proposed by Gastpar and Sula (2019), thereby providing an operational meaning to the latter. We also give an upper bound on the communication rate for the randomness-on-the-forehead model where each processor observes all but one source of randomness and we give an achievable strategy for the general case where the processors have access to arbitrary subsets of sources of randomness. Also, we consider a more general model where the processors observe components of correlated sources (with the coordinator observing all the components), where we characterize the communication rate when all the processors wish to output the same random sequence. In the oblivious coordinator setting, we completely characterize the trade-off region between the communication and shared randomness rates for the general case where the processors have access to arbitrary subsets of sources of randomness.
We discuss the problem of learning collaborative behaviour through communication in multi-agent systems using deep reinforcement learning. A connectivity-driven communication (CDC) algorithm is proposed to address three key aspects: what agents to involve in the communication, what information content to share, and how often to share it. The multi-agent system is modelled as a weighted graph with nodes representing agents. The unknown edge weights reflect the degree of communication between pairs of agents, which depends on a diffusion process on the graph - the heat kernel. An optimal communication strategy, tightly coupled with overall graph topology, is learned end-to-end concurrently with the agents policy so as to maximise future expected returns. Empirical results show that CDC is capable of superior performance over alternative algorithms for a range of cooperative navigation tasks, and that the learned graph structures can be interpretable.
Most existing interpretable methods explain a black-box model in a post-hoc manner, which uses simpler models or data analysis techniques to interpret the predictions after the model is learned. However, they (a) may derive contradictory explanations on the same predictions given different methods and data samples, and (b) focus on using simpler models to provide higher descriptive accuracy at the sacrifice of prediction accuracy. To address these issues, we propose a hybrid interpretable model that combines a piecewise linear component and a nonlinear component. The first component describes the explicit feature contributions by piecewise linear approximation to increase the expressiveness of the model. The other component uses a multi-layer perceptron to capture feature interactions and implicit nonlinearity, and increase the prediction performance. Different from the post-hoc approaches, the interpretability is obtained once the model is learned in the form of feature shapes. We also provide a variant to explore higher-order interactions among features to demonstrate that the proposed model is flexible for adaptation. Experiments demonstrate that the proposed model can achieve good interpretability by describing feature shapes while maintaining state-of-the-art accuracy.
Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6times 10^{11}$ tokens and based on the Common Crawl repository of web data.
We design and develop a new shared Augmented Reality (AR) workspace for Human-Robot Interaction (HRI), which establishes a bi-directional communication between human agents and robots. In a prototype system, the shared AR workspace enables a shared perception, so that a physical robot not only perceives the virtual elements in its own view but also infers the utility of the human agent--the cost needed to perceive and interact in AR--by sensing the human agents gaze and pose. Such a new HRI design also affords a shared manipulation, wherein the physical robot can control and alter virtual objects in AR as an active agent; crucially, a robot can proactively interact with human agents, instead of purely passively executing received commands. In experiments, we design a resource collection game that qualitatively demonstrates how a robot perceives, processes, and manipulates in AR and quantitatively evaluates the efficacy of HRI using the shared AR workspace. We further discuss how the system can potentially benefit future HRI studies that are otherwise challenging.