No Arabic abstract
We discuss the problem of learning collaborative behaviour through communication in multi-agent systems using deep reinforcement learning. A connectivity-driven communication (CDC) algorithm is proposed to address three key aspects: what agents to involve in the communication, what information content to share, and how often to share it. The multi-agent system is modelled as a weighted graph with nodes representing agents. The unknown edge weights reflect the degree of communication between pairs of agents, which depends on a diffusion process on the graph - the heat kernel. An optimal communication strategy, tightly coupled with overall graph topology, is learned end-to-end concurrently with the agents policy so as to maximise future expected returns. Empirical results show that CDC is capable of superior performance over alternative algorithms for a range of cooperative navigation tasks, and that the learned graph structures can be interpretable.
Deep reinforcement learning algorithms have recently been used to train multiple interacting agents in a centralised manner whilst keeping their execution decentralised. When the agents can only acquire partial observations and are faced with tasks requiring coordination and synchronisation skills, inter-agent communication plays an essential role. In this work, we propose a framework for multi-agent training using deep deterministic policy gradients that enables concurrent, end-to-end learning of an explicit communication protocol through a memory device. During training, the agents learn to perform read and write operations enabling them to infer a shared representation of the world. We empirically demonstrate that concurrent learning of the communication device and individual policies can improve inter-agent coordination and performance in small-scale systems. Our experimental results show that the proposed method achieves superior performance in scenarios with up to six agents. We illustrate how different communication patterns can emerge on six different tasks of increasing complexity. Furthermore, we study the effects of corrupting the communication channel, provide a visualisation of the time-varying memory content as the underlying task is being solved and validate the building blocks of the proposed memory device through ablation studies.
Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise in their design. This paper introduces the deep implicit coordination graph (DICG) architecture for such scenarios. DICG consists of a module for inferring the dynamic coordination graph structure which is then used by a graph neural network based module to learn to implicitly reason about the joint actions or values. DICG allows learning the tradeoff between full centralization and decentralization via standard actor-critic methods to significantly improve coordination for domains with large number of agents. We apply DICG to both centralized-training-centralized-execution and centralized-training-decentralized-execution regimes. We demonstrate that DICG solves the relative overgeneralization pathology in predatory-prey tasks as well as outperforms various MARL baselines on the challenging StarCraft II Multi-agent Challenge (SMAC) and traffic junction environments.
We propose a targeted communication architecture for multi-agent reinforcement learning, where agents learn both what messages to send and whom to address them to while performing cooperative tasks in partially-observable environments. This targeting behavior is learnt solely from downstream task-specific reward without any communication supervision. We additionally augment this with a multi-round communication approach where agents coordinate via multiple rounds of communication before taking actions in the environment. We evaluate our approach on a diverse set of cooperative multi-agent tasks, of varying difficulties, with varying number of agents, in a variety of environments ranging from 2D grid layouts of shapes and simulated traffic junctions to 3D indoor environments, and demonstrate the benefits of targeted and multi-round communication. Moreover, we show that the targeted communication strategies learned by agents are interpretable and intuitive. Finally, we show that our architecture can be easily extended to mixed and competitive environments, leading to improved performance and sample complexity over recent state-of-the-art approaches.
We consider the problem where $N$ agents collaboratively interact with an instance of a stochastic $K$ arm bandit problem for $K gg N$. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of $T$ time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of $tilde{O}left(sqrt{({K/N}+ N)T}right)$, communicates for $O(log T)$ steps and broadcasts $O(log K)$ bits in each communication step. We extend the work to sparse graphs with maximum degree $K_G$, and diameter $D$ and propose LCC-UCB-GRAPH which enjoys a regret bound of $tilde{O}left(Dsqrt{(K/N+ K_G)DT}right)$. Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithm perform well and outperform strategies that communicate through a central node
In this work, we propose a novel memory-based multi-agent meta-learning architecture and learning procedure that allows for learning of a shared communication policy that enables the emergence of rapid adaptation to new and unseen environments by learning to learn learning algorithms through communication. Behavior, adaptation and learning to adapt emerges from the interactions of homogeneous experts inside a single agent. The proposed architecture should allow for generalization beyond the level seen in existing methods, in part due to the use of a single policy shared by all experts within the agent as well as the inherent modularity of Badger.