Do you want to publish a course? Click here

Automatic Cell Counting in Flourescent Microscopy Using Deep Learning

650   0   0.0 ( 0 )
 Added by Luca Clissa
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Counting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annotating cells is sometimes subject to arbitrariness due to the operators interpretation of the borderline cases. We propose a Machine Learning approach that exploits a fully-convolutional network in a binary segmentation fashion to localize the objects of interest. Counts are then retrieved as the number of detected items. Specifically, we adopt a UNet-like architecture leveraging residual units and an extended bottleneck for enlarging the field-of-view. In addition, we make use of weighted maps that penalize the errors on cells boundaries increasingly with overcrowding. These changes provide more context and force the model to focus on relevant features during pixel-wise classification. As a result, the model performance is enhanced, especially in presence of clumping cells, artifacts and confounding biological structures. Posterior assessment of the results with domain experts confirms that the model detects cells of interest correctly. The model demonstrates a human-level ability inasmuch even erroneous predictions seem to fall within the limits of operator interpretation. This qualitative assessment is also corroborated by quantitative metrics as an ${F_1}$ score of 0.87. Despite some difficulties in interpretation, results are also satisfactory with respect to the counting task, as testified by mean and median absolute error of, respectively, 0.8 and 1.

rate research

Read More

Accurately counting the number of cells in microscopy images is required in many medical diagnosis and biological studies. This task is tedious, time-consuming, and prone to subjective errors. However, designing automatic counting methods remains challenging due to low image contrast, complex background, large variance in cell shapes and counts, and significant cell occlusions in two-dimensional microscopy images. In this study, we proposed a new density regression-based method for automatically counting cells in microscopy images. The proposed method processes two innovations compared to other state-of-the-art density regression-based methods. First, the density regression model (DRM) is designed as a concatenated fully convolutional regression network (C-FCRN) to employ multi-scale image features for the estimation of cell density maps from given images. Second, auxiliary convolutional neural networks (AuxCNNs) are employed to assist in the training of intermediate layers of the designed C-FCRN to improve the DRM performance on unseen datasets. Experimental studies evaluated on four datasets demonstrate the superior performance of the proposed method.
Current surveillance and control systems still require human supervision and intervention. This work presents a novel automatic handgun detection system in videos appropriate for both, surveillance and control purposes. We reformulate this detection problem into the problem of minimizing false positives and solve it by building the key training data-set guided by the results of a deep Convolutional Neural Networks (CNN) classifier, then assessing the best classification model under two approaches, the sliding window approach and region proposal approach. The most promising results are obtained by Faster R-CNN based model trained on our new database. The best detector show a high potential even in low quality youtube videos and provides satisfactory results as automatic alarm system. Among 30 scenes, it successfully activates the alarm after five successive true positives in less than 0.2 seconds, in 27 scenes. We also define a new metric, Alarm Activation per Interval (AApI), to assess the performance of a detection model as an automatic detection system in videos.
We describe an automated analysis method to quantify the detailed growth dynamics of a population of bacilliform bacteria. We propose an innovative approach to frame-sequence tracking of deformable-cell motion by the automated minimization of a new, specific cost functional. This minimization is implemented by dedicated Boltzmann machines (stochastic recurrent neural networks). Automated detection of cell divisions is handled similarly by successive minimizations of two cost functions, alternating the identification of children pairs and parent identification. We validate this automatic cell tracking algorithm using recordings of simulated cell colonies that closely mimic the growth dynamics of emph{E. coli} in microfluidic traps. On a batch of 1100 image frames, cell registration accuracies per frame ranged from 94.5% to 100%, with a high average. Our initial tests using experimental image sequences of emph{E. coli} colonies also yield convincing results, with a registration accuracy ranging from 90% to 100%.
Single molecule localization microscopy is widely used in biological research for measuring the nanostructures of samples smaller than the diffraction limit. This study uses multifocal plane microscopy and addresses the 3D single molecule localization problem, where lateral and axial locations of molecules are estimated. However, when we multifocal plane microscopy is used, the estimation accuracy of 3D localization is easily deteriorated by the small lateral drifts of camera positions. We formulate a 3D molecule localization problem along with the estimation of the lateral drifts as a compressed sensing problem, A deep neural network was applied to accurately and efficiently solve this problem. The proposed method is robust to the lateral drifts and achieves an accuracy of 20 nm laterally and 50 nm axially without an explicit drift correction.
With super-resolution optical microscopy, it is now possible to observe molecular interactions in living cells. The obtained images have a very high spatial precision but their overall quality can vary a lot depending on the structure of interest and the imaging parameters. Moreover, evaluating this quality is often difficult for non-expert users. In this work, we tackle the problem of learning the quality function of super- resolution images from scores provided by experts. More specifically, we are proposing a system based on a deep neural network that can provide a quantitative quality measure of a STED image of neuronal structures given as input. We conduct a user study in order to evaluate the quality of the predictions of the neural network against those of a human expert. Results show the potential while highlighting some of the limits of the proposed approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا