Do you want to publish a course? Click here

Combat COVID-19 Infodemic Using Explainable Natural Language Processing Models

81   0   0.0 ( 0 )
 Added by Feng Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Misinformation of COVID-19 is prevalent on social media as the pandemic unfolds, and the associated risks are extremely high. Thus, it is critical to detect and combat such misinformation. Recently, deep learning models using natural language processing techniques, such as BERT (Bidirectional Encoder Representations from Transformers), have achieved great successes in detecting misinformation. In this paper, we proposed an explainable natural language processing model based on DistilBERT and SHAP (Shapley Additive exPlanations) to combat misinformation about COVID-19 due to their efficiency and effectiveness. First, we collected a dataset of 984 claims about COVID-19 with fact checking. By augmenting the data using back-translation, we doubled the sample size of the dataset and the DistilBERT model was able to obtain good performance (accuracy: 0.972; areas under the curve: 0.993) in detecting misinformation about COVID-19. Our model was also tested on a larger dataset for AAAI2021 - COVID-19 Fake News Detection Shared Task and obtained good performance (accuracy: 0.938; areas under the curve: 0.985). The performance on both datasets was better than traditional machine learning models. Second, in order to boost public trust in model prediction, we employed SHAP to improve model explainability, which was further evaluated using a between-subjects experiment with three conditions, i.e., text (T), text+SHAP explanation (TSE), and text+SHAP explanation+source and evidence (TSESE). The participants were significantly more likely to trust and share information related to COVID-19 in the TSE and TSESE conditions than in the T condition. Our results provided good implications in detecting misinformation about COVID-19 and improving public trust.



rate research

Read More

As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised to strengthen the research in false information detection where the participants are asked to predict seven different binary labels regarding false information in a tweet. The shared task has been organised in three languages; Arabic, Bulgarian and English. In this paper, we present our approach to tackle the task objective using transformers. Overall, our approach achieves a 0.707 mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1 score in English ranking 4th place in all the languages.
The COVID-19 pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP), the branch of artificial intelligence that interprets human language, can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.
Natural language processing (NLP) plays a significant role in tools for the COVID-19 pandemic response, from detecting misinformation on social media to helping to provide accurate clinical information or summarizing scientific research. However, the approaches developed thus far have not benefited all populations, regions or languages equally. We discuss ways in which current and future NLP approaches can be made more inclusive by covering low-resource languages, including alternative modalities, leveraging out-of-the-box tools and forming meaningful partnerships. We suggest several future directions for researchers interested in maximizing the positive societal impacts of NLP.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا