Do you want to publish a course? Click here

Token-Modification Adversarial Attacks for Natural Language Processing: A Survey

169   0   0.0 ( 0 )
 Added by Tom Roth
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

There are now many adversarial attacks for natural language processing systems. Of these, a vast majority achieve success by modifying individual document tokens, which we call here a textit{token-modification} attack. Each token-modification attack is defined by a specific combination of fundamental textit{components}, such as a constraint on the adversary or a particular search algorithm. Motivated by this observation, we survey existing token-modification attacks and extract the components of each. We use an attack-independent framework to structure our survey which results in an effective categorisation of the field and an easy comparison of components. We hope this survey will guide new researchers to this field and spark further research into the individual attack components.



rate research

Read More

Recent work has demonstrated the vulnerability of modern text classifiers to universal adversarial attacks, which are input-agnostic sequences of words added to text processed by classifiers. Despite being successful, the word sequences produced in such attacks are often ungrammatical and can be easily distinguished from natural text. We develop adversarial attacks that appear closer to natural English phrases and yet confuse classification systems when added to benign inputs. We leverage an adversarially regularized autoencoder (ARAE) to generate triggers and propose a gradient-based search that aims to maximize the downstream classifiers prediction loss. Our attacks effectively reduce model accuracy on classification tasks while being less identifiable than prior models as per automatic detection metrics and human-subject studies. Our aim is to demonstrate that adversarial attacks can be made harder to detect than previously thought and to enable the development of appropriate defenses.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.
132 - Lingfei Wu , Yu Chen , Kai Shen 2021
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
140 - Ming Liu , Stella Ho , Mengqi Wang 2021
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا