Do you want to publish a course? Click here

Deep Neural Networks with ReLU-Sine-Exponential Activations Break Curse of Dimensionality on Holder Class

143   0   0.0 ( 0 )
 Added by Yuling Jiao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we construct neural networks with ReLU, sine and $2^x$ as activation functions. For general continuous $f$ defined on $[0,1]^d$ with continuity modulus $omega_f(cdot)$, we construct ReLU-sine-$2^x$ networks that enjoy an approximation rate $mathcal{O}(omega_f(sqrt{d})cdot2^{-M}+omega_{f}left(frac{sqrt{d}}{N}right))$, where $M,Nin mathbb{N}^{+}$ denote the hyperparameters related to widths of the networks. As a consequence, we can construct ReLU-sine-$2^x$ network with the depth $5$ and width $maxleft{leftlceil2d^{3/2}left(frac{3mu}{epsilon}right)^{1/{alpha}}rightrceil,2leftlceillog_2frac{3mu d^{alpha/2}}{2epsilon}rightrceil+2right}$ that approximates $fin mathcal{H}_{mu}^{alpha}([0,1]^d)$ within a given tolerance $epsilon >0$ measured in $L^p$ norm $pin[1,infty)$, where $mathcal{H}_{mu}^{alpha}([0,1]^d)$ denotes the Holder continuous function class defined on $[0,1]^d$ with order $alpha in (0,1]$ and constant $mu > 0$. Therefore, the ReLU-sine-$2^x$ networks overcome the curse of dimensionality on $mathcal{H}_{mu}^{alpha}([0,1]^d)$. In addition to its supper expressive power, functions implemented by ReLU-sine-$2^x$ networks are (generalized) differentiable, enabling us to apply SGD to train.



rate research

Read More

We investigate the parameter-space geometry of recurrent neural networks (RNNs), and develop an adaptation of path-SGD optimization method, attuned to this geometry, that can learn plain RNNs with ReLU activations. On several datasets that require capturing long-term dependency structure, we show that path-SGD can significantly improve trainability of ReLU RNNs compared to RNNs trained with SGD, even with various recently suggested initialization schemes.
91 - Yunfei Yang , Zhen Li , Yang Wang 2020
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces, which are widely used in signal processing, image processing, communications and so on. Approximation error bounds are estimated with respect to the width and depth of neural networks. The network construction is based on the bit extraction and data-fitting capacity of deep neural networks. As applications of our main results, the approximation rates of classical function spaces such as Sobolev spaces and Besov spaces are obtained. We also give lower bounds of the $L^p (1le p le infty)$ approximation error for Sobolev spaces, which show that our construction of neural network is asymptotically optimal up to a logarithmic factor.
Neural networks have been widely used to solve complex real-world problems. Due to the complicate, nonlinear, non-convex nature of neural networks, formal safety guarantees for the output behaviors of neural networks will be crucial for their applications in safety-critical systems.In this paper, the output reachable set computation and safety verification problems for a class of neural networks consisting of Rectified Linear Unit (ReLU) activation functions are addressed. A layer-by-layer approach is developed to compute output reachable set. The computation is formulated in the form of a set of manipulations for a union of polyhedra, which can be efficiently applied with the aid of polyhedron computation tools. Based on the output reachable set computation results, the safety verification for a ReLU neural network can be performed by checking the intersections of unsafe regions and output reachable set described by a union of polyhedra. A numerical example of a randomly generated ReLU neural network is provided to show the effectiveness of the approach developed in this paper.
We present polynomial time and sample efficient algorithms for learning an unknown depth-2 feedforward neural network with general ReLU activations, under mild non-degeneracy assumptions. In particular, we consider learning an unknown network of the form $f(x) = {a}^{mathsf{T}}sigma({W}^mathsf{T}x+b)$, where $x$ is drawn from the Gaussian distribution, and $sigma(t) := max(t,0)$ is the ReLU activation. Prior works for learning networks with ReLU activations assume that the bias $b$ is zero. In order to deal with the presence of the bias terms, our proposed algorithm consists of robustly decomposing multiple higher order tensors arising from the Hermite expansion of the function $f(x)$. Using these ideas we also establish identifiability of the network parameters under minimal assumptions.
82 - Rui Zhu , Bo Lin , Haixu Tang 2020
The number of linear regions is one of the distinct properties of the neural networks using piecewise linear activation functions such as ReLU, comparing with those conventional ones using other activation functions. Previous studies showed this property reflected the expressivity of a neural network family ([14]); as a result, it can be used to characterize how the structural complexity of a neural network model affects the function it aims to compute. Nonetheless, it is challenging to directly compute the number of linear regions; therefore, many researchers focus on estimating the bounds (in particular the upper bound) of the number of linear regions for deep neural networks using ReLU. These methods, however, attempted to estimate the upper bound in the entire input space. The theoretical methods are still lacking to estimate the number of linear regions within a specific area of the input space, e.g., a sphere centered at a training data point such as an adversarial example or a backdoor trigger. In this paper, we present the first method to estimate the upper bound of the number of linear regions in any sphere in the input space of a given ReLU neural network. We implemented the method, and computed the bounds in deep neural networks using the piece-wise linear active function. Our experiments showed that, while training a neural network, the boundaries of the linear regions tend to move away from the training data points. In addition, we observe that the spheres centered at the training data points tend to contain more linear regions than any arbitrary points in the input space. To the best of our knowledge, this is the first study of bounding linear regions around a specific data point. We consider our work as a first step toward the investigation of the structural complexity of deep neural networks in a specific input area.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا