Do you want to publish a course? Click here

Bar pattern speeds in CALIFA galaxies III. Solving the puzzle of ultrafast bars

187   0   0.0 ( 0 )
 Added by Virginia Cuomo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

More than 10% of the barred galaxies with a direct measurement of the bar pattern speed host an ultrafast bar. These bars extend beyond the corotation radius and challenge our understanding of the orbital structure of barred galaxies. Most of them are found in spiral galaxies, rather than in lenticular ones. We analysed the properties of the ultrafast bars detected in the CALIFA Survey to investigate whether they are an artefact resulting from an overestimation of the bar radius and/or an underestimation of the corotation radius or a new class of bars, whose orbital structure has not yet been understood. We revised the available measurements of the bar radius based on ellipse fitting and Fourier analysis and of the bar pattern speed from the Tremaine-Weinberg method. In addition, we measured the bar radius from the analysis of the maps tracing the transverse-to-radial force ratio, which we obtained from the deprojected i-band images of the galaxies retrieved from the SDSS Survey. We found that nearly all the sample galaxies are spirals with an inner ring or pseudo-ring circling the bar and/or strong spiral arms, which hamper the measurement of the bar radius from the ellipse fitting and Fourier analysis. According to these methods, the bar ends overlap the ring or the spiral arms making the adopted bar radius unreliable. On the contrary, the bar radius from the ratio maps are shorter than the corotation radius. This is in agreement with the theoretical predictions and findings of numerical simulations about the extension and stability of the stellar orbits supporting the bars. We conclude that ultrafast bars are no longer observed when the correct measurement of the bar radius is adopted. Deriving the bar radius in galaxies with rings and strong spiral arms is not straightforward and a solid measurement method based on both photometric and kinematic data is still missing.



rate research

Read More

60 - V. Cuomo 2019
We aim at investigating the formation process of weak bars by measuring their properties in a sample of 29 nearby SAB galaxies, spanning a wide range of morphological types and luminosities. The sample galaxies were selected to have an intermediate inclination, a bar at an intermediate angle between the disc minor and major axes, and an undisturbed morphology and kinematics to allow the direct measurement of the bar pattern speed. Combining our analysis with previous studies, we compared the properties of weak and strong bars. We measured the bar radius and strength from the r-band images available in SDSS and bar pattern speed and corotation radius from the stellar kinematics obtained by CALIFA. We derived the bar rotation rate as the ratio between the corotation and bar radii. Thirteen out of 29 galaxies, which were morphologically classified as SABs from a visual inspection, do not actually host a bar component or their central elongated component is not in rigid rotation. We successfully derived the bar pattern speed in 16 objects. Two of them host an ultrafast bar. Using the bar strength to differentiate weak and strong bars, we found that the SABs host shorter bars with smaller corotation radii than their strongly barred counterparts. Weak and strong bars have similar bar pattern speeds and rotation rates, which are all consistent with being fast. We did not observe any difference between the bulge prominence in SAB and SB galaxies, whereas nearly all the weak bars reside in the disc inner parts, contrary to strong bars. We ruled out that the bar weakening is only related to the bulge prominence and that the formation of weak bars is triggered by the tidal interaction with a companion. Our observational results suggest that weak bars may be evolved systems exchanging less angular momentum with other galactic components than strong bars.
289 - Witold Maciejewski 2009
The method to study oscillating potentials of double bars, based on invariant loops, is introduced here in a new way, intended to be more intelligible. Using this method, I show how the orbital structure of a double-barred galaxy (nested bars) changes with the variation of nuclear bars pattern speed. Not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below certain minimum pattern speed orbital support for the inner bar abruptly disappears, while high values of this speed lead to loops that are increasingly round. For values between these two extremes, loops supporting the inner bar extend further out as its pattern speed decreases, and they become more eccentric and pulsate more. These findings do not apply to counter-rotating inner bars.
Based on a high quality $N$-body simulation of a double bar galaxy model, we investigate the evolution of the bar properties, including their size, strength and instantaneous pattern speed derived by using three distinct methods: the Fourier, Jacobi integral, and moment of inertia methods. The interaction of the two bars, which rotate at distinct speeds, primarily affects the size, strength and pattern speed of the inner bar. When the two bars are perpendicular to each other, the size and the pattern speed of the inner bar decrease and its strength increases. The emergence of a strong Fourier $m=1$ mode increases the oscillation amplitude of the size, strength and pattern speed of the inner bar. On the other hand, the characteristics of the outer bar are substantially influenced by its adjacent spiral structure. When the spiral structure disappears, the size of the outer bar increases and its strength and pattern speed decrease. Consequently, the ratio of the pattern speed of the outer bar with respect to the inner bar is not constant and increases with time. Overall, the double bar and disk system displays substantial high frequency semi-chaotic fluctuations of the pattern strengths and speeds both in space and time, superposed on the slow secular evolution, which invalidates the assumption that the actions of individual stars should be well conserved in barred galaxies, such as the Milky Way.
We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disk galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the CALIFA survey. We use the DiskFit algorithm to apply rotation only and bisymmetric flow models to H$alpha$ velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. DiskFit is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than $15,$km$,$s$^{-1}$ across at least two independent radial bins in the fit, or ~2.25 kpc at the characteristic final sample distance of ~75 Mpc. The velocity fields of 25/37 $(67.6^{+6.6}_{-8.5}%)$ galaxies are best characterized by pure rotation, although only 17/25 $(68.0^{+7.7}_{-10.4}%)$ of them have sufficient H$alpha$ emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the remaining 12/37 $(32.4^{+8.5}_{-6.6}%)$ galaxies. We conclude that the non-circular flows detected in 11/12 $(91.7^{+2.8}_{-14.9}%)$ systems stem from bars. Galaxies with intermediate (AB) bars are largely undetected, and our detection thresholds therefore represent upper limits to the amplitude of the non-circular flows therein. We find 2/23 $(8.7^{+9.6}_{-2.9}%)$ galaxies that show non-circular motions consistent with a bar-like flow, yet no photometric bar is evident. This suggests that in ~10% of galaxies either the existence of a bar may be missed completely in photometry or other processes may drive bar-like flows and thus secular galaxy evolution.
282 - Ortwin Gerhard 2010
A brief review is given of different methods used to determine the pattern speeds of the Galactic bar and spiral arms. The Galactic bar rotates rapidly, with corotation about halfway between the Galactic center and the Sun, and outer Lindblad resonance not far from the solar orbit, R0. The Galactic spiral arms currently rotate with a distinctly slower pattern speed, such that corotation is just outside R0. Both structures therefore seem dynamically decoupled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا