Do you want to publish a course? Click here

Deciphering Bitcoin Blockchain Data by Cohort Analysis

116   0   0.0 ( 0 )
 Added by Luyao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Bitcoin is a peer-to-peer electronic payment system that popularized rapidly in recent years. Usually, we need to query the complete history of Bitcoin blockchain data to acquire variables with economic meaning. This becomes increasingly difficult now with over 1.6 billion historical transactions on the Bitcoin blockchain. It is thus important to query Bitcoin transaction data in a way that is more efficient and provides economic insights. We apply cohort analysis that interprets Bitcoin blockchain data using methods developed for population data in social science. Specifically, we query and process the Bitcoin transaction input and output data within each daily cohort, which enables us to create datasets and visualizations for some key indicators of Bitcoin transactions, including the daily lifespan distributions of spent transaction output (STXO) and the daily age distributions of the accumulated unspent transaction output (UTXO). We provide a computationally feasible approach to characterize Bitcoin transactions, which paves the way for the future economic studies of Bitcoin.



rate research

Read More

Investors tend to sell their winning investments and hold onto their losers. This phenomenon, known as the emph{disposition effect} in the field of behavioural finance, is well-known and its prevalence has been shown in a number of existing markets. But what about new atypical markets like cryptocurrencies? Do investors act as irrationally as in traditional markets? One might suspect this and hypothesise that cryptocurrency sells occur more frequently in positive market conditions and less frequently in negative market conditions. However, there is still no empirical evidence to support this. In this paper, we expand on existing research and empirically investigate the prevalence of the disposition effect in Bitcoin by testing this hypothesis. Our results show that investors are indeed subject to the disposition effect, tending to sell their winning positions too soon and holding on to their losing position for too long. This effect is very prominently evident from the boom and bust year 2017 onwards, confirmed via most of the applied technical indicators. In this study, we show that Bitcoin traders act just as irrationally as traders in other, more established markets.
As the first decentralized digital currency introduced in 2009 together with the blockchain, Bitcoin offers new opportunities both for developed and developing countries. Bitcoin peer-to-peer transactions are independent of the banking system, thus facilitating foreign exchanges with low transaction fees such as remittances, with a high degree of anonymity. These opportunities together with other key factors led the Bitcoin to become extremely popular and made its price skyrocket during 2017. However, while the Bitcoin blockchain attracts a lot of attention, it remains difficult to investigate where this attention comes from, due to the pseudo-anonymity of the system, and consequently to appreciate its social impact. Here we make an attempt to characterize the adoption of the bitcoin blockchain by country. In the first part of the work we show that information about the number of Bitcoin software client downloads, the IP addresses that act as relays for the transactions, and the Internet searches about Bitcoin provide together a coherent picture of the system evolution in different countries. Using these quantities as a proxy for user adoption, we identified several socio-economic indexes such as the GDP per capita, freedom of trade and the Internet penetration as key variables correlated with the degree of user adoption. In the second part of the work, we build a network of Bitcoin transactions between countries using the IP addresses of nodes relaying transactions and we develop an augmented version of the gravity model of trade in order to identify socio-economic factors linked to the flow of bitcoins between countries. In a nutshell our study provides a new insight on the bitcoin adoption by country and on the potential socio-economic drivers of the international bitcoin flow.
308 - Zhiyong Tu 2019
Bitcoin as well as other cryptocurrencies are all plagued by the impact from bifurcation. Since the marginal cost of bifurcation is theoretically zero, it causes the coin holders to doubt on the existence of the coins intrinsic value. This paper suggests a normative dual-value theory to assess the fundamental value of Bitcoin. We draw on the experience from the art market, where similar replication problems are prevalent. The idea is to decompose the total value of a cryptocurrency into two parts: one is its art value and the other is its use value. The tradeoff between these two values is also analyzed, which enlightens our proposal of an image coin for Bitcoin so as to elevate its use value without sacrificing its art value. To show the general validity of the dual-value theory, we also apply it to evaluate the prospects of four major cryptocurrencies. We find this framework is helpful for both the investors and the exchanges to examine a new coins value when it first appears in the market.
Global stabilization of viscous Burgers equation around constant steady state solution has been discussed in the literature. The main objective of this paper is to show global stabilization results for the 2D forced viscous Burgers equation around a nonconstant steady state solution using nonlinear Neumann boundary feedback control law, under some smallness condition on that steady state solution. On discretizing in space using $C^0$ piecewise linear elements keeping time variable continuous, a semidiscrete scheme is obtained. Moreover, global stabilization results for the semidiscrete solution and optimal error estimates for the state variable in $L^infty(L^2)$ and $L^infty(H^1)$-norms are derived. Further, optimal convergence result is established for the boundary feedback control law. All our results in this paper preserve exponential stabilization property. Finally, some numerical experiments are documented to confirm our theoretical findings.
168 - Ce Ju 2020
The purpose of this paper is to write a complete survey of the (spectral) manifold learning methods and nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR methods in history were respectively published in Science in 2000 in which they solve the similar reduction problem of high-dimensional data endowed with the intrinsic nonlinear structure. The intrinsic nonlinear structure is always interpreted as a concept in manifolds from geometry and topology in theoretical mathematics by computer scientists and theoretical physicists. In 2001, the concept of Manifold Learning first appears as an NLDR method called Laplacian Eigenmaps purposed by Belkin and Niyogi. In the typical manifold learning setup, the data set, also called the observation set, is distributed on or near a low dimensional manifold $M$ embedded in $mathbb{R}^D$, which yields that each observation has a $D$-dimensional representation. The goal of (spectral) manifold learning is to reduce these observations as a compact lower-dimensional representation based on the geometric information. The reduction procedure is called the (spectral) manifold learning method. In this paper, we derive each (spectral) manifold learning method with the matrix and operator representation, and we then discuss the convergence behavior of each method in a geometric uniform language. Hence, we name the survey Geometric Foundations of Data Reduction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا