We design optimal interferometric schemes for implementation of two-qubit linear optical quantum filters diagonal in the computational basis. The filtering is realized by interference of the two photons encoding the qubits in a multiport linear optical interferometer, followed by conditioning on presence of a single photon in each output port of the filter. The filter thus operates in the coincidence basis, similarly to many linear optical unitary quantum gates. Implementation of the filter with linear optics may require an additional overhead in terms of reduced overall success probability of the filtering and the optimal filters are those that maximize the overall success probability. We discuss in detail the case of symmetric real filters and extend our analysis also to asymmetric and complex filters.
We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neumann measurement or the three-element POVM measurement is optimal, and more interestingly, in the latter case the components of the postmeasurement ensemble are invariant for a class of states.
By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the International School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).
Here we propose an experiment in Linear Optical Quantum Computing (LOQC) using the framework first developed by Knill, Laflamme, and Milburn. This experiment will test the ideas of the authors previous work on imperfect LOQC gates using number-resolving photon detectors. We suggest a relatively simple physical apparatus capable of producing CZ gates with controllable fidelity less than 1 and success rates higher than the current theoretical maximum (S=2/27) for perfect fidelity. These experimental setups are within the reach of many experimental groups and would provide an interesting experiment in photonic quantum computing.
Heisenbergs uncertainty relations for measurement quantify how well we can jointly measure two complementary observables and have attracted much experimental and theoretical attention recently. Here we provide an exact tradeoff between the worst-case errors in measuring jointly two observables of a qubit, i.e., all the allowed and forbidden pairs of errors, especially asymmetric ones, are exactly pinpointed. For each pair of optimal errors we provide an optimal joint measurement that is realizable without introducing any ancilla and entanglement. Possible experimental implementations are discussed and Toronto experiment [Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] can be readily adapted to an optimal joint measurement of two orthogonal observables.