Do you want to publish a course? Click here

Optimal joint measurement of two observables of a qubit

533   0   0.0 ( 0 )
 Added by Sixia Yu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heisenbergs uncertainty relations for measurement quantify how well we can jointly measure two complementary observables and have attracted much experimental and theoretical attention recently. Here we provide an exact tradeoff between the worst-case errors in measuring jointly two observables of a qubit, i.e., all the allowed and forbidden pairs of errors, especially asymmetric ones, are exactly pinpointed. For each pair of optimal errors we provide an optimal joint measurement that is realizable without introducing any ancilla and entanglement. Possible experimental implementations are discussed and Toronto experiment [Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] can be readily adapted to an optimal joint measurement of two orthogonal observables.



rate research

Read More

155 - Sixia Yu , Naile Liu , Li Li 2008
We present a single inequality as the necessary and sufficient condition for two unsharp observables of a two-level system to be jointly measurable in a single apparatus and construct explicitly the joint observables. A complementarity inequality arising from the condition of joint measurement, which generalizes Englerts duality inequality, is derived as the trade-off between the unsharpnesses of two jointly measurable observables.
Wigner and Husimi quasi-distributions, owing to their functional regularity, give the two archetypal and equivalent representations of all observable-parameters in continuous-variable quantum information. Balanced homodyning and heterodyning that correspond to their associated sampling procedures, on the other hand, fare very differently concerning their state or parameter reconstruction accuracies. We present a general theory of a now-known fact that heterodyning can be tomographically more powerful than balanced homodyning to many interesting classes of single-mode quantum states, and discuss the treatment for two-mode sources.
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neumann measurement or the three-element POVM measurement is optimal, and more interestingly, in the latter case the components of the postmeasurement ensemble are invariant for a class of states.
We consider multi-time correlators for output signals from linear detectors, continuously measuring several qubit observables at the same time. Using the quantum Bayesian formalism, we show that for unital (symmetric) evolution in the absence of phase backaction, an $N$-time correlator can be expressed as a product of two-time correlators when $N$ is even. For odd $N$, there is a similar factorization, which also includes a single-time average. Theoretical predictions agree well with experimental results for two detectors, which simultaneously measure non-commuting qubit observables.
127 - Srinivas Sridharan 2011
In this article we explore a modification in the problem of controlling the rotation of a two level quantum system from an initial state to a final state in minimum time. Specifically we consider the case where the qubit is being weakly monitored -- albeit with an assumption that both the measurement strength as well as the angular velocity are assumed to be control signals. This modification alters the dynamics significantly and enables the exploitation of the measurement backaction to assist in achieving the control objective. The proposed method yields a significant speedup in achieving the desired state transfer compared to previous approaches. These results are demonstrated via numerical solutions for an example problem on a single qubit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا