Do you want to publish a course? Click here

Search for topological defect dark matter using the global network of optical magnetometers for exotic physics searches (GNOME)

91   0   0.0 ( 0 )
 Added by Joseph A. Smiga
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared to the galaxy but much larger than the Earth. Here, we report the results of a search for transient signals from axion-like particle domain walls with the Global Network of Optical Magnetometers for Exotic physics searches (GNOME). We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of data from a continuous month-long operation of the GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.



rate research

Read More

66 - S. Afach , D. Budker , G. DeCamp 2018
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the networks operation (e.g., data acquisition, format, storage, and diagnostics) are described. Characterization of the GNOME is a key prerequisite to searches for and identification of exotic physics signatures.
We search for transient variations of the fine structure constant using data from a European network of fiber-linked optical atomic clocks. By searching for coherent variations in the recorded clock frequency comparisons across the network, we significantly improve the constraints on transient variations of the fine structure constant. For example, we constrain the variation in alpha to <5*10^-17 for transients of duration 10^3 s. This analysis also presents a possibility to search for dark matter, the mysterious substance hypothesised to explain galaxy dynamics and other astrophysical phenomena that is thought to dominate the matter density of the universe. At the current sensitivity level, we find no evidence for dark matter in the form of topological defects (or, more generally, any macroscopic objects), and we thus place constraints on certain potential couplings between the dark matter and standard model particles, substantially improving upon the existing constraints, particularly for large (>~10^4 km) objects.
The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be distinguished from random noise. The reliability of the analysis procedure and the sensitivity of the GNOME to domain-wall crossings is studied using simulated data.
The Dark Ages, probed by the redshifted 21-cm signal, is the ideal epoch for a new rigorous test of the standard LCDM cosmological model. Divergences from that model would indicate new physics, such as dark matter decay (heating) or baryonic cooling beyond that expected from adiabatic expansion of the Universe. In the early Universe, most of the baryonic matter was in the form of neutral hydrogen (HI), detectable via its ground states spin-flip transition. A measurement of the redshifted 21-cm spectrum maps the history of the HI gas through the Dark Ages and Cosmic Dawn and up to the Epoch of Reionization (EoR). The Experiment to Detect the Global EoR Signature (EDGES) recently reported an absorption trough at 78 MHz (redshift z of 17), similar in frequency to expectations for Cosmic Dawn, but about 3 times deeper than was thought possible from standard cosmology and adiabatic cooling of HI. Interactions between baryons and slightly-charged dark matter particles with electron-like mass provide a potential explanation of this difference but other cooling mechanisms are also being investigated to explain these results. The Cosmic Dawn trough is affected by cosmology and the complex astrophysical history of the first luminous objects. Another trough is expected during the Dark Ages, prior to the formation of the first stars and thus determined entirely by cosmological phenomena (including dark matter). Observations on or in orbit above the Moons farside can investigate this pristine epoch (15-40 MHz; z=100-35), which is inaccessible from Earth. A single cross-dipole antenna or compact array can measure the amplitude of the 21-cm spectrum to the level required to distinguish (at >5$sigma$}) the standard cosmological model from that of additional cooling derived from current EDGES results. This observation constitutes a powerful, clean probe of exotic physics in the Dark Ages.
Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the $b bar b$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $b bar b$ channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا