Do you want to publish a course? Click here

Spectral Top-Down Recovery of Latent Tree Models

63   0   0.0 ( 0 )
 Added by Yariv Aizenbud
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modeling the distribution of high dimensional data by a latent tree graphical model is a common approach in multiple scientific domains. A common task is to infer the underlying tree structure given only observations of the terminal nodes. Many algorithms for tree recovery are computationally intensive, which limits their applicability to trees of moderate size. For large trees, a common approach, termed divide-and-conquer, is to recover the tree structure in two steps. First, recover the structure separately for multiple randomly selected subsets of the terminal nodes. Second, merge the resulting subtrees to form a full tree. Here, we develop Spectral Top-Down Recovery (STDR), a divide-and-conquer approach for inference of large latent tree models. Unlike previous methods, STDRs partitioning step is non-random. Instead, it is based on the Fiedler vector of a suitable Laplacian matrix related to the observed nodes. We prove that under certain conditions this partitioning is consistent with the tree structure. This, in turn leads to a significantly simpler merging procedure of the small subtrees. We prove that STDR is statistically consistent, and bound the number of samples required to accurately recover the tree with high probability. Using simulated data from several common tree models in phylogenetics, we demonstrate that STDR has a significant advantage in terms of runtime, with improved or similar accuracy.



rate research

Read More

81 - Piotr Zwiernik 2017
Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent class model. Latent tree models, or their submodels, are widely used in: phylogenetic analysis, network tomography, computer vision, causal modeling, and data clustering. They also contain other well-known classes of models like hidden Markov models, Brownian motion tree model, the Ising model on a tree, and many popular models used in phylogenetics. This article offers a concise introduction to the theory of latent tree models. We emphasise the role of tree metrics in the structural description of this model class, in designing learning algorithms, and in understanding fundamental limits of what and when can be learned.
We show that a simple community detection algorithm originated from stochastic blockmodel literature achieves consistency, and even optimality, for a broad and flexible class of sparse latent space models. The class of models includes latent eigenmodels (arXiv:0711.1146). The community detection algorithm is based on spectral clustering followed by local refinement via normalized edge counting.
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a deep latent variable model. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.
Continuous latent time series models are prevalent in Bayesian modeling; examples include the Kalman filter, dynamic collaborative filtering, or dynamic topic models. These models often benefit from structured, non mean field variational approximations that capture correlations between time steps. Black box variational inference with reparameterization gradients (BBVI) allows us to explore a rich new class of Bayesian non-conjugate latent time series models; however, a naive application of BBVI to such structured variational models would scale quadratically in the number of time steps. We describe a BBVI algorithm analogous to the forward-backward algorithm which instead scales linearly in time. It allows us to efficiently sample from the variational distribution and estimate the gradients of the ELBO. Finally, we show results on the recently proposed dynamic word embedding model, which was trained using our method.
We provide an end-to-end differentially private spectral algorithm for learning LDA, based on matrix/tensor decompositions, and establish theoretical guarantees on utility/consistency of the estimated model parameters. The spectral algorithm consists of multiple algorithmic steps, named as {edges}, to which noise could be injected to obtain differential privacy. We identify emph{subsets of edges}, named as {configurations}, such that adding noise to all edges in such a subset guarantees differential privacy of the end-to-end spectral algorithm. We characterize the sensitivity of the edges with respect to the input and thus estimate the amount of noise to be added to each edge for any required privacy level. We then characterize the utility loss for each configuration as a function of injected noise. Overall, by combining the sensitivity and utility characterization, we obtain an end-to-end differentially private spectral algorithm for LDA and identify the corresponding configuration that outperforms others in any specific regime. We are the first to achieve utility guarantees under the required level of differential privacy for learning in LDA. Overall our method systematically outperforms differentially private variational inference.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا