Do you want to publish a course? Click here

Adaptive Load Shedding for Grid Emergency Control via Deep Reinforcement Learning

314   0   0.0 ( 0 )
 Added by Ying Zhang Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Emergency control, typically such as under-voltage load shedding (UVLS), is broadly used to grapple with low voltage and voltage instability issues in practical power systems under contingencies. However, existing emergency control schemes are rule-based and cannot be adaptively applied to uncertain and floating operating conditions. This paper proposes an adaptive UVLS algorithm for emergency control via deep reinforcement learning (DRL) and expert systems. We first construct dynamic components for picturing the power system operation as the environment. The transient voltage recovery criteria, which poses time-varying requirements to UVLS, is integrated into the states and reward function to advise the learning of deep neural networks. The proposed approach has no tuning issue of coefficients in reward functions, and this issue was regarded as a deficiency in the existing DRL-based algorithms. Extensive case studies illustrate that the proposed method outperforms the traditional UVLS relay in both the timeliness and efficacy for emergency control.



rate research

Read More

Load shedding has been one of the most widely used and effective emergency control approaches against voltage instability. With increased uncertainties and rapidly changing operational conditions in power systems, existing methods have outstanding issues in terms of either speed, adaptiveness, or scalability. Deep reinforcement learning (DRL) was regarded and adopted as a promising approach for fast and adaptive grid stability control in recent years. However, existing DRL algorithms show two outstanding issues when being applied to power system control problems: 1) computational inefficiency that requires extensive training and tuning time; and 2) poor scalability making it difficult to scale to high dimensional control problems. To overcome these issues, an accelerated DRL algorithm named PARS was developed and tailored for power system voltage stability control via load shedding. PARS features high scalability and is easy to tune with only five main hyperparameters. The method was tested on both the IEEE 39-bus and IEEE 300-bus systems, and the latter is by far the largest scale for such a study. Test results show that, compared to other methods including model-predictive control (MPC) and proximal policy optimization(PPO) methods, PARS shows better computational efficiency (faster convergence), more robustness in learning, excellent scalability and generalization capability.
As power systems are undergoing a significant transformation with more uncertainties, less inertia and closer to operation limits, there is increasing risk of large outages. Thus, there is an imperative need to enhance grid emergency control to maintain system reliability and security. Towards this end, great progress has been made in developing deep reinforcement learning (DRL) based grid control solutions in recent years. However, existing DRL-based solutions have two main limitations: 1) they cannot handle well with a wide range of grid operation conditions, system parameters, and contingencies; 2) they generally lack the ability to fast adapt to new grid operation conditions, system parameters, and contingencies, limiting their applicability for real-world applications. In this paper, we mitigate these limitations by developing a novel deep meta reinforcement learning (DMRL) algorithm. The DMRL combines the meta strategy optimization together with DRL, and trains policies modulated by a latent space that can quickly adapt to new scenarios. We test the developed DMRL algorithm on the IEEE 300-bus system. We demonstrate fast adaptation of the meta-trained DRL polices with latent variables to new operating conditions and scenarios using the proposed method and achieve superior performance compared to the state-of-the-art DRL and model predictive control (MPC) methods.
Under voltage load shedding has been considered as a standard and effective measure to recover the voltage stability of the electric power grid under emergency and severe conditions. However, this scheme usually trips a massive amount of load which can be unnecessary and harmful to customers. Recently, deep reinforcement learning (RL) has been regarded and adopted as a promising approach that can significantly reduce the amount of load shedding. However, like most existing machine learning (ML)-based control techniques, RL control usually cannot guarantee the safety of the systems under control. In this paper, we introduce a novel safe RL method for emergency load shedding of power systems, that can enhance the safe voltage recovery of the electric power grid after experiencing faults. Unlike the standard RL method, the safe RL method has a reward function consisting of a Barrier function that goes to minus infinity when the system state goes to the safety bounds. Consequently, the optimal control policy can render the power system to avoid the safety bounds. This method is general and can be applied to other safety-critical control problems. Numerical simulations on the 39-bus IEEE benchmark is performed to demonstrate the effectiveness of the proposed safe RL emergency control, as well as its adaptive capability to faults not seen in the training.
We apply the meta reinforcement learning framework to optimize an integrated and adaptive guidance and flight control system for an air-to-air missile, implementing the system as a deep neural network (the policy). The policy maps observations directly to commanded rates of change for the missiles control surface deflections, with the observations derived with minimal processing from the computationally stabilized line of sight unit vector measured by a strap down seeker, estimated rotational velocity from rate gyros, and control surface deflection angles. The system induces intercept trajectories against a maneuvering target that satisfy control constraints on fin deflection angles, and path constraints on look angle and load. We test the optimized system in a six degrees-of-freedom simulator that includes a non-linear radome model and a strapdown seeker model. Through extensive simulation, we demonstrate that the system can adapt to a large flight envelope and off nominal flight conditions that include perturbation of aerodynamic coefficient parameters and center of pressure locations. Moreover, we find that the system is robust to the parasitic attitude loop induced by radome refraction, imperfect seeker stabilization, and sensor scale factor errors. Finally, we compare our systems performance to two benchmarks: a proportional navigation guidance system benchmark in a simplified 3-DOF environment, which we take as an upper bound on performance attainable with separate guidance and flight control systems, and a longitudinal model of proportional navigation coupled with a three loop autopilot. We find that our system moderately outperforms the former, and outperforms the latter by a large margin.
The work aims to improve the existing fast load shedding algorithm for industrial power system to increase performance, reliability, and scalability for future expansions. The paper illustrates the development of a scalable algorithm to compute the shedding matrix, and the test performed on a model of the electric grid of an offshore platform. From this model it is possible to study the impact on the transients of various parameters, such as spinning reserve and delay time. Subsequently, the code is converted into Structured Text and implemented on an ABB PLC. The scalability of the load shedding algorithm is thus verified, confirming its performance with respect to the computation of the shedding matrix and the usefulness of the dynamic simulations during the design phase of the plant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا